
0 COVER PAGE

RITTLE
Reference Manual

Abstract
Description of the programming language Rittle

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 1

Contents

0 COVER PAGE .. 0

1 NEWS AND UPDATES .. 6

2 INTRODUCTION ... 8

3 BASICS ... 9

3.1 Source Files ... 9

3.2 Comments in the Source ... 9

3.3 Numeric Constants .. 10

3.3.1 Binary Numbers .. 10

3.3.2 Hexadecimal Numbers .. 11

3.3.3 Decimal Integer Numbers ... 11

3.3.4 Decimal Real Numbers .. 11

3.4 Symbolic Constants (TEXT) .. 12

3.5 Statements .. 13

3.6 Identifiers .. 14

3.6.1 Variables and Data Types .. 14

3.6.2 Functions ... 17

3.6.3 Reserved Words .. 21

3.7 Operations .. 21

4 DATA TYPE “TEXT” ... 24

4.1 General Information ... 24

4.2 Operations .. 24

4.3 Text Formatting ... 25

5 UNITS ... 27

5.1 Defining Data Structures ... 27

5.2 Structural Arrays ... 28

6 CONSTANT DATA ARRAYS ... 30

7 PROGRAM CONTROL STRUCTURES ... 31

7.1 Conditional Branch .. 31

7.2 Loop... 32

7.3 Exit and Repeat ... 34

7.4 Labels .. 34

8 PARALLEL PROCESSES ... 36

9 REFERENCE OF THE BUILT-IN FUNCTIONS .. 37

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 2

9.1 Mathematical Functions ... 37

9.1.1 sin .. 37

9.1.2 cos ... 37

9.1.3 tan ... 37

9.1.4 asin .. 37

9.1.5 acos ... 38

9.1.6 atan ... 38

9.1.7 hsin .. 38

9.1.8 htan ... 38

9.1.9 trim .. 38

9.1.10 abs ... 39

9.1.11 sign .. 39

9.1.12 deg ... 39

9.1.13 rad ... 39

9.1.14 log .. 39

9.1.15 ln.. 40

9.1.16 exp ... 40

9.1.17 E ... 40

9.1.18 PI ... 40

9.1.19 random .. 40

9.2 Text Functions ... 41

9.2.1 val .. 41

9.2.2 format ... 41

9.2.3 sim ... 41

9.2.4 search .. 41

9.2.5 insert ... 42

9.2.6 char ... 42

9.2.7 code ... 42

9.2.8 cut ... 42

9.3 Files and File Storage Devices ... 43

9.3.1 init ... 43

9.3.2 mount .. 43

9.3.3 where .. 44

9.3.4 delete .. 44

9.3.5 rename .. 44

9.3.6 copy ... 44

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 3

9.3.7 open .. 45

9.3.8 close .. 45

9.3.9 isopen .. 45

9.3.10 fpos .. 45

9.3.11 eof ... 46

9.3.12 ioerr ... 46

9.3.13 seek ... 46

9.3.14 fsize ... 46

9.3.15 write .. 46

9.3.16 read ... 47

9.3.17 ffirst ... 47

9.3.18 fnext .. 47

9.3.19 mkdir ... 48

9.3.20 rmdir .. 48

9.3.21 chdir .. 48

9.4 Multitasking .. 49

9.4.1 pproc ... 49

9.4.2 pterm... 49

9.5 Others ... 49

9.5.1 include ... 49

9.5.2 run ... 50

9.5.3 platform .. 50

9.5.4 freemem .. 50

9.5.5 uptime ... 50

9.5.6 wait.. 51

9.5.7 tick ... 51

9.5.8 type ... 52

9.5.9 size .. 52

9.5.10 clear ... 53

9.5.11 isword .. 53

9.5.12 count ... 53

9.5.13 isval ... 54

9.5.14 bit .. 54

9.5.15 userbrk .. 54

9.6 User Interface and Graphics ... 54

9.6.1 print ... 54

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 4

9.6.2 CRLF ... 55

9.6.3 conch ... 55

9.6.4 conrd ... 55

9.6.5 cls .. 56

9.6.6 gpattr ... 56

9.6.7 gprint ... 56

9.6.8 pixel ... 57

9.6.9 fill ... 57

9.6.10 line ... 58

9.6.11 circle .. 58

9.6.12 ellipse .. 58

9.6.13 triangle .. 59

9.6.14 rect .. 59

9.6.15 gput ... 60

9.6.16 gget ... 60

9.6.17 font .. 61

9.6.18 shape ... 65

10 GLOSSARY OF THE CORE FUNCTIONS ... 67

11 GLOSSARY OF THE GUI FUNCTIONS .. 68

12 EXTREME PROGRAMMING WITH RITTLE .. 69

12.1 Group Assignments ... 69

12.2 Variables as Data Types .. 70

12.3 Renaming and Reusing Variables .. 70

12.4 Dynamic Arrays ... 71

12.5 Multiple Comparisons ... 71

12.6 Increments and Decrements ... 72

12.7 Morphing Functions .. 72

12.8 Nested Functions .. 73

12.9 Function Variables .. 74

12.9.1 Declaring Function Variables .. 74

12.9.2 Using Function Variables ... 75

13 RIDE ... 76

13.1 Writing Programs in the Text Editor ... 77

13.2 Compiling and Executing Programs .. 79

13.3 Debugging Programs ... 80

13.4 Saving, Loading, and Generating Executable Files .. 84

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 5

14 OPERATING ENVIRONMENT ... 86

14.1 The DIR Command .. 87

14.2 The MOUNT and INIT Commands ... 87

14.3 Running Executable Files .. 89

14.4 Listing Text Files .. 90

14.5 Other commands for Work with File System .. 90

14.6 System Configuration in CONFIG.SYS .. 90

15 RITTLE FOR THE PIC32MZ MICROCONTROLLER .. 92

15.1 Pinout .. 92

15.2 The RITTLE Board .. 96

15.3 Work with I/O ports .. 97

15.3.1 port .. 97

15.3.2 Vref .. 99

15.3.3 Din ... 99

15.3.4 Dout... 100

15.3.5 Dtog ... 100

15.3.6 Ain ... 100

15.3.7 setPWM ... 100

15.4 Work with Communication Interfaces .. 101

15.4.1 enable.. 101

15.4.2 disable ... 103

15.4.3 trmt ... 103

15.4.4 recv .. 104

15.5 Real-Time Clock and Calendar .. 105

15.5.1 srctime .. 105

15.5.2 settime .. 105

15.5.3 gettime .. 106

15.6 System Control .. 106

15.6.1 clock .. 106

15.6.2 sleep .. 107

15.7 Specific Peripheral Modules ... 108

15.7.1 LCD4 .. 108

15.7.2 display ... 110

15.7.3 touch ... 114

16 GLOSSARY OF THE PIC32MZEF ADDITIONS ... 117

17 LICENSE CONDITIONS .. 118

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 6

1 NEWS AND UPDATES

Join the Rittle group

Rittle for PIC32MZ

Rittle for Windows (limited demo with only core functionality)

March 2020

Rittle for PIC32MZ:

Added COM5.

September 2019

Rittle core:

Closing ; characters in source lines are now optional, not mandatory.

July 2019

Rittle core:

 Improved experience and better functionality in RIDE.

 Virtual cursor in displays.

 Added sector() command.

Rittle for PIC32MZ (in addition to the core functionality):

Introduced driver support for touch panels.

Support for XPT2046/TSC2046 resistive touch panels.

June 2019

http://www.rittle.org/
https://www.facebook.com/groups/870790016631429/
http://rittle.org/downloads/RittlePC.zip

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 7

Rittle core:

 Introduced standard interface driver model.

 Added graphic user interface primitives such as pixel(), rect(), and others.

Functions for drawing complex vectored shapes (turtle graphics) and

filling areas.

Support for user-defined fixed and variable width fonts with character size

up to 255x255 pixels.

Font smoothing at higher scaling factors.

Platform-dependent function codes finalised in the region 0xC0 … 0xEF.

Binary executables with platform-dependent functions from versions

before J6.3, will be incompatible without new compilation.

Rittle for PIC32MZ (in addition to the core functionality):

Introduced support for small standardised SPI displays with resolutions

from 32x32 pixels to 480x480 pixels, and 24-bit colour.

Display rotation and mirroring – with appropriate custom fonts, support

for left-to-right and right-to-left scripting.

Support for 4-bit HD44780-compatible alpha-numeric LCD modules.

Improved power consumption profile.

May 2019

First public demo release and activation of the website http://rittle.org as well

as the public forum.

Alpha stage release for PIC32MZ and PC.

April 2017

Earliest RSC and RVM. Version G4.1-alpha.

February 2017

Development started.

http://www.rittle.org/
http://rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 8

2 INTRODUCTION

Rittle is a new imperative multi-purpose programming language and integrated

programming environment. It is algorithmically structured language with syntax

and features built as a mixture from several other prominent predecessors such

as C, BASIC, Python, and others. It also contains some new features not found

elsewhere.

Download this documentation as PDF

The concept behind Rittle, is to build a fully integrated framework for small

systems and microcontroller, where development can be done in a simpler,

more streamlined way, similar to what could be found in the computers of the

late 20th century. Rittle however, is approaching the problem from a modern

perspective with the inclusion of language structures and features used in the

mainstream languages of recent time.

By design the Rittle programming environment is an interactive shell composed

from a Source Compiler (RSC), a lightweight Virtual Machine (RVM), which

executes the produced p-code after compilation, and a basic console-based

integrated development environment and text editor, called RIDE (Rittle

Integrated Development Environment).

http://www.rittle.org/
http://rittle.org/downloads/Rittle.pdf

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 9

3 BASICS

3.1 Source Files

Rittle source code is a script consisting of commands, functions, parameters,

constants, and expressions in text form. The typical file extension of a Rittle

source file is .RIT.

A program can be written in any text editor, and then fed through the RSC it

comes out as a compiled pseudo-code in format that RVM understands and

executes.

Only a very limited set of non-printable characters are allowed in the source.

These are the ‘Space’ character (ASCII code 32), ‘Horizontal Tab’ (ASCII code 9),

‘New Line’ (ASCII code 10), ‘Vertical Tab’ (ASCII code 11), and ‘Carriage Return’

(ASCII code 13). RSC will exit with an error if any other non-printable character

is found in the source during compilation. These characters are called

whitespace and are ignored during the compilation.

It is important to remember that once compiled, the file is in binary format and

becomes unreadable by normal human standards, so always keep the sources

so you can edit your code and generate new compiled output when needed!

The typical file extension of a binary file with compiled Rittle code which is

executable by the RVM, is .RXE.

3.2 Comments in the Source

Comments in Rittle are only presented in the input source script and are stripped

by RSC in the output compiled p-code.

There are two types of comments – to the end of the current text line, and multi-

line ones spanning from beginning marker to end marker over one or more text

lines.

The first type occupies only the text within the current text line. It starts with an

apostrophe character ' and ends along with the text line on which it is.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 10

 ' this is a comment to the end of the current line only

The multi-line comments start with a special marker which is an apostrophe

character followed immediately by an underscore character. After this point the

comment can spread over as many lines as necessary without any limitations. It

only ends by reaching a combination opposite to the opening marker – an

underscore character, followed by an apostrophe. Since the comment will end

at the first found such sequence, nesting of multi-line comments is not allowed.

 '_ this is a comment that can last as many lines as needed

 This line continues the same comment

 … and this one as well, until the end marker is reached _'

A very specific case is when the developer wants to leave some comments

embedded in the output compiled code.

In such cases there should be an exclamation mark immediately following the

apostrophe: '! or '!_

3.3 Numeric Constants

Numbers in Rittle can be represented in several different ways:

3.3.1 Binary Numbers

Binary numbers always start with a ‘0b’ or ‘0B’ sequence, followed by one or

more binary digits. Binary digits are only the digits 0 and 1.

So, 0b111011010100 is a valid binary number, but 0b111011210100 is not, since

it contains a character which is not a valid binary digit.

The largest binary number currently supported in Rittle can have 64 binary

digits.

Additionally, it is worth mentioning that binary numbers are always unsigned.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 11

3.3.2 Hexadecimal Numbers

Similar to the binary numbers, hexadecimal numbers in Rittle always start with

a ‘0x’ or ‘0X’ sequence, followed by one or more hexadecimal digits.

Hexadecimal digits are the digits from 0 to 9, as well as the letters ‘A’, ‘B’, C’, D’,

‘E’, and ‘F’, as well as their lowercase counterparts ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’.

The largest hexadecimal number currently supported in Rittle can have 16

hexadecimal digits.

Hexadecimal numbers are also always unsigned.

3.3.3 Decimal Integer Numbers

These are the most commonly used number as they are represented in the

standard decimal format in which people operate in the everyday life.

The decimal integer numbers can be signed (preceded by a ‘–’ or ‘+’ character),

and contain the digits from 0 to 9.

The integer decimal numbers currently supported in Rittle’s 64-bit arithmetic

cover from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

This range of numbers is enough for almost every aspect in the everyday integer

arithmetic calculations.

3.3.4 Decimal Real Numbers

These numbers represent the full range of real numbers with decimal point and

optional exponent. Their binary representation in the system memory is

standardised by IEEE-754 as 64 bits long, and able to cover at least the range

from 10−308 to 10308

Typically, the accuracy after the decimal point can go as deep as 16 digits.

The format is again an optional minus or plus character, followed by one or more

decimal numbers, followed by an optional decimal point and more decimal

numbers, after which an optional exponent character ‘e’ or ‘E’ should be

followed again by a standard signed or unsigned decimal number and optional

decimal point part.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 12

The Exponent part defines the number in standard scientific exponential format.

In summary the whole real number can be expressed as:

[-] integer [.fraction] [E [-] exponent [.fraction]]

Examples of several real numbers in Rittle: -0.3 6.779 -2E11 9.03E-2.84

3.4 Symbolic Constants (TEXT)

Symbolic constant in Rittle is defined as an undefined length sequence of 8-bit

ASCII symbols enclosed between " double quote characters. This data type is

called TEXT.

"This is a text constant"

In some cases, the text constant may need to include a double quote character,

or other characters outside of the standard printable set. Rittle allows specifying

any character code from within the text constant without introducing ambiguity

over whether it is a closing double quote (in the particular case) or not. These

special sequences are called escape codes, and always start with an underscore

character followed by one or more other characters to form the needed code.

The pre-defined escape codes in Rittle are listed below:

_a ASCII code 0x07 (alert, beep)

_b ASCII code 0x08 (backspace)

_t ASCII code 0x09 (horizontal tab)

_n ASCII code 0x0a (new line)

_v ASCII code 0x0b (vertical tab)

_f ASCII code 0x0c (form feed)

_r ASCII code 0x0d (carriage return)

_e ASCII code 0x1b (escape)

_" double quote character

_ _ underscore character

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 13

In addition to the pre-defined escape codes, any character code may be included

by entering its ASCII code directly as an escape code:

_NNN character with decimal code NNN

_xNN character with hexadecimal code NN

In some example:

"This text constant includes _"special_" escape codes and a new line_n"

In specific cases if a text constant is too long to fit within the current source line,

it can be composed as a sequence of more than one text constants that are

added together during compilation. In order to achieve this the text constant

must be followed immediately by its continuation part preceded by an

underscore character.

Important: Nothing except comments is allowed between a text constant and

its continuation. Failure of this rule will result in incorrectly compiled output

code.

 "This is a text constant"
Nothing else is allowed between these two lines!

_" that gets continued here"

At system level text constants are compiled as part of the program code and

represented in the memory as zero-terminated strings. Obviously due to this

fact, character with code 0 cannot reside within a text constant.

3.5 Statements

Statement is a piece of code that is telling that something needs to be done.

That could be to call some function, to assign value to something, etc.

The important thing to know at this stage is, that every statement in Rittle must

be completed with a ‘;’ character. A statement ends where the logic meaning of

something ends, and something else starts from there.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 14

If a source line contains only one statement, then the closing ‘;’ character is

optional and can be omitted.

3.6 Identifiers

Identifiers in Rittle are all words that identify something to use, or something to

do – variables, function names, reserved keywords. They all follow the same

naming rules for identifiers.

An identifier is a single continuous word with no spaces, must start with a Latin

letter or the underscore character, and can contain only Latin letters, digits, and

underscore characters.

So, in examples:

A12 record Next_ID _name field7

…are all valid identifiers.

Some invalid identifiers:

9pp (doesn’t start with a letter) Error! (contains an invalid character)

 …are invalid identifiers.

All identifiers in Rittle are case-sensitive.

That means for example ‘data, ‘Data, and ‘datA, are three different identifiers

from language perspective.

3.6.1 Variables and Data Types

Variable is an identifier which represents some data. It can be read or written,

located at a specific location in the memory, or consist of several elements of

the same type. In the last case the variable is called “array”.

There are several data types in Rittle:

byte - 8 bits, integer range -128 … +128

small - 16 bits, integer range -32,768 … +32,767

big - 64 bits, integer range -9,223,372,036,854,775,808 … +9,223,372,036,854,775,807

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 15

real - 64 bits, floating point range 10−308 … 10308

text - unlimited sequence of 8-bit ASCII characters ending with NUL

(ASCII code 0)

func - special type used to pass function names as parameters to

functions

any - morphing into any supported data type

The small type can be declared also as sint16. Similarly, the int type can be

declared as sint32. And big can be declared as sint64.

And finally, the byte type can be declared with the more technical sint8.

In a typical scenario the types “byte” and “small” have practical meaning only

when applied to variables that are directly linked to hardware (i.e. MCU registers

for instance). Using them elsewhere in a program offers no considerable

improvement in speed or memory consumption, but could be a potential source

of problems coming from erroneous use of numbers outside of their limited

range.

Respectively the type “big” should be used when there is an actual need to work

with exceptionally big integer numbers. Therefore, for the majority of

application scenarios, especially with the popular 32-bit system architectures,

the type “int” is the recommended type for work with integer numbers.

The type “any” is most flexible. It can represent data in any other type

depending on the context.

Declaring variables is one of the most complex and important aspect of any

language, and Rittle makes no exception from that rule. The declaration

statement is composed from several sections and the overall format is this:

var [role] type name [[size [:size …]]] [maxlen [length]] [at address]

[, name …] [= value, …];

The parameters “address” and “size” can be only numeric constants or variable

names, while “value” can be a composite expression.

“role” is optional specific term which will be explained later with the functions.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 16

“type” is one of the valid data types.

“name” is a unique and valid identifier name.

“maxlen” is valid only when the type is text. It defines a maximum length for the

variable. Note that the length parameter also needs to be enclosed in square

brackets. All operations that produce a longer result will lead to the variable

being automatically truncated to the specified maximum length.

The var-statement must be completed with a ‘;’ character, just like any other

statement in Rittle;

Let’s consider the declaration in more details.

The first word var informs that one or more variables will be declared in this

statement. This is the keyword in Rittle that makes declarations possible.

After var follows an optional section, which tells the compiler where that

variable is located in the physical memory. Generally, this refers to specific

hardware registers or areas of memory which are fixed by the hardware. Unless

there is a very good reason why a variable should be directed to a fixed address,

there is no need to use at otherwise.

var byte reg at 0x82a0;

This example declares a variable with name “reg”, which is of type byte and is

located at fixed memory address 0x82a0.

Address specifier works with multiple variables by declaring all of them pointing

to the same address. It also works with arrays by specifying the initial address of

the array.

Declaring arrays is done by using indicating the number of elements in the array:

var real a [10];

This declares an array of 10 elements of type real as a variable with name “a”;

Multi-dimensional arrays are declared in the same way by simply adding the

sizes and separating them with a ‘:’ character:

var real a [10:10:10] at 0x400000;

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 17

The statement above declares a three-dimensional array of real numbers (1000

elements in total) as variable with name “a”, and the array resides in a fixed

memory location starting from address 0x400000;

It is important to remember that indexes for arrays always start from 0. Thus, an

array with 10 elements will have valid indexes [0] through [9]. The same applies

to multi-dimensional arrays – the index for any dimension always starts from 0.

Variables can be also declared in multiples within the same var-statement, if all

of them are of the same type. Their names are separated by a ‘,’ character:

var small second, minute, hour, day, month;

The last section in a var-statement allows variables to be initialised during the

declaration. Initialisation values follow after a ‘=’ character. In a simple form:

 var int x = -1;

This statement declares a variable “x” and assigns it a value of -1.

Initialisation of arrays during their declaration is not possible. It is a good

practice to have arrays individually declared each in its own “var” statement.

3.6.2 Functions

Functions are pieces of code that is called by name and performs some

operation. Optionally functions may need to receive some data from the outside

world and return some other data back after finishing the operation.

Declaring a function in Rittle is done by using the words: “func” and “endfunc”:

func name;

 ……. something to do …….

 ……. something to do …….

 ……. something to do …….

endfunc;

“name” is the desired function name. It must be a unique (within the current

namespace) and also conform to the requirements of a valid identifier.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 18

Nesting of functions is allowed. In such case the nested function names can be

the same if declared in different parent functions:

func foo1;

 func moo;

 ……. something to do in the function …….

 ……. something to do in the function …….

endfunc;

 ……. something else to do …….

endfunc;

func foo2;

 func moo;

 ……. something to do in the function …….

 ……. something to do in the function …….

endfunc;

 ……. something else to do …….

endfunc;

In this example both the functions “foo1” and “foo2” contain a nested function

“moo”, which may be something completely different in the two cases.

Functions use specially declared local variables to receive data from the caller,

or to return data back to the caller. These variables define what type of data is

expected, and what role that data plays in the function.

There are three types of role for a local variable: “input”, “output”, and “refer”.

Input role is when the variable takes input from the caller. Data is copied into

the local variable and can be used with the body of the function only. The local

variable gets destroyed after the function ends.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 19

IMPORTANT! All interface variables “input”, “output”, and “refer” must be

declared before calls to other functions.

Output role is when the variable carries something back to the caller. When the

function finishes, the caller gets back information from all output variables.

Refer role is more specific. It is bidirectional (serves as input and output at the

same time). No actual local variable is created, but instead, the function gains

access directly to the variable supplied by the caller. That external variable is just

known under the specified local name.

Variables which are passed to functions as refer-type need to be preceded by a

‘@’ character. This instructs the compiler to send to the function a reference to

the variable, instead of its data. The same rule is in place for functions passed to

func-type variables.

When referring to arrays the variable name must be followed by “[]”. As an

example: referring to a single variable “x” would be “@x”, whereas referring to

an array with name “x” would be “@x[]”.

It is an important detail to point out that referencing variables always points to

the variable itself, but not to a single element in it, in case of arrays. Hence the

forms @var (for single variables) and @var[] (for arrays), are valid, but the form

@var[index], is not.

So, the bottom line of the roles is: a function may have none or a number of

input parameters; may return nothing or several pieces of data to the caller; or

may directly read and modify data which belongs to the caller.

In an example:

func foo;

 var input int a, b, c;

 var output int n, m, p;

 var refer small k;

……. something to do in the function …….

……. something to do in the function …….

endfunc;

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 20

This function receives two bytes, returns two bytes, and refers to another byte

which belongs to the caller.

Calling functions in Rittle is similar to variable initialisation – a function is called

with one or more, or none parameters, and the output is assigned to one or

more, or none variables:

var int a,b,c = foo(x,y,@z);

In this case variable “a” will be assigned with the first output variable from

function, variable “b” with the second, etc.

In this example the variable “z” is referred to when calling the function.

The number of receiving variables must match or be greater than the number of

output variables in the function.

One important feature of this model, is that Rittle allows a single function to

behave differently, based on input conditions. For example, a function may have

only one fixed input parameter, based on which it may take more input

parameters and return different data.

The initialisation statement allows freely mixed constants, variables, and

functions:

var int a,b,c = foo(x,y,z), A, 25;

The last thing to point out is that Rittle does not require function parameters to

be enclosed in brackets. It is up to the user to decide when to use brackets for

more clarity in the source. From Rittle’s perspective the two statements

 foo(1,2,3); and foo 1,2,3; … are exactly the same.

In some cases, such as during variable initialisation however, brackets may play

an important role to tell the compiler what is a parameter to a function, and

what is not.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 21

3.6.3 Reserved Words

Rittle allocates a certain number of words such as “while”, “var”, “small”, etc.

These reserved words build the language and cannot be used as variable or

function names.

3.7 Operations

Operations are generally divided in two main groups: operations with numbers,

and operations with text.

Operations are performed by considering their level of precedence. Same level

operations are executed sequentially in the order they appear in the expression.

Comparisons work with any data type. When performed on text arguments, the

operation is performed by comparing the ASCII codes in each argument

sequentially.

Some operations have dual function depending on the type of the arguments

they work with. The operator “\” for example will perform integer division when

working with integer numbers. The same operator however can be used to

round a real number:

x = 2.75 \ 1 ‘ this is equivalent to x = 3

Arithmetic and logic operations

Operation Argument type Description

+ any
Performs addition with numbers

Texts are concatenated

- numeric Subtraction

* numeric Multiplication

/ numeric Division

\ numeric Integer division with integer numbers

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 22

With real numbers the result is rounded to the

nearest integer number

\\ numeric

Modulo operation with integer numbers

With real numbers the result is only the fraction

after the decimal point

^ numeric Exponentiation

and integer only Bitwise AND

or integer only Bitwise OR

xor integer only Bitwise Exclusive OR

not numeric
The function is 1 if the argument is 0, and 0 if

the argument is not 0

~ numeric

Bitwise negation with integer numbers

With real numbers only the sign of the number

is inverted

<< integer only Bit shift left

>> integer only Bit shift right

++ numeric Increment by 1

-- numeric Decrement by 1

The “++” and “--“ operations deserve a few extra words. These two work with

numeric variables only, and immediately precede or follow in the source the

variable name, on which will perform increment by 1 or decrement by 1,

respectively.

When preceding the variable (as in “++a”) the operation is performed before

the value from the variable is taken.

Trailing the variable (as in “a++”) means the variable value modified after it was

taken in the statement.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 23

Comparison operations

Operation Description

== Returns 1 if the two arguments are equal

<> Returns 1 if the two arguments are different

< Returns 1 if argument 1 is smaller than argument 2

<= Returns 1 if argument 1 is smaller or equal than argument 2

>= Returns 1 if argument 1 is greater or equal than argument 2

> Returns 1 if argument 1 is greater than argument 2

By their level of precedence all operations are grouped in this way:

Operation Level

++ -- highest

~ not

^

 << >>

* / \ \\

+ -

== <> < <= >= >

and or xor lowest

The order of execution the operations can be changed if necessary, by enclosing

in (brackets) the needed sections in an expression.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 24

4 DATA TYPE “TEXT”

4.1 General Information

The “text” data type is an important feature of Rittle. It allows easy work with

symbolic data represented as a sequence of unlimited length consisting of any

8-bit ASCII code with the exception of code 0. The sequence is terminated by a

character with code 0.

There are only a few but powerful functions to operate with text in Rittle.

An important detail to be mentioned: RVM performs all the necessary

operations to allocate the needed memory and transfer the data when working

with text data, so from user’s perspective text data has no limit in length. The

developer can specify the maximum allowed length for text data, though. RVM

will take care to ensure that the length of the variable during execution never

goes beyond a specified value.

Arrays of text data type are allowed and work in the same way as numeric arrays.

4.2 Operations

As basic operations can be considered those such as conjunction, measuring,

and code extraction.

Two texts can be conjoined by using the “+” operation:

var text s1,s2,s3;

………

s1=s2+s3; ‘ s1 becomes a text which contains the conjoined s2 and s3 result

The function measuring the length of a text returns the number of characters in

it (except the closing 0, which is invisible by the user).

Provided is also a function for searching a text within another text, starting from

a specified character index. Another function cuts and returns part of a text.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 25

The most interesting functionality however, and the most useful one, is the text

formatting.

4.3 Text Formatting

Text formatting in Rittle is performed by the function “format”:

format fmt [, parameter1, parameter2, …]

The function takes undefined number of parameters (minimum one – the

format specifications), and returns a single text which can be assigned to a

variable, output, etc.

The function name “format” can be replaced with its alias in Rittle – the

character ‘$’.

The format specification text is the only mandatory parameter. It is a text, which

also may contain instructions to take more parameters. The formed output text

is taken from the input “fmt” with all references to parameters processed and

replaced with their results.

Format instructions in the input text always start with a ‘|’ character, and have

the following general format:

| type [modifiers [length [.precision]] [modifiers]]

It is important to note that no spaces are allowed within a format instruction

(except for specifying fill characters which will be discussed later).

“type” is a single character which specifies the data type of the parameter:

‘d’ or ‘D’ Decimal number

Only decimal numbers can have the “.precision” part of the

instruction.

‘x’ or ‘X’ Hexadecimal number

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 26

The case register of the type determines the case register of the

hexadecimal letters.

‘b’ or ‘B’ Binary number

‘t’ or ‘T’ Text

Modifiers are characters which instruct how the output result should be

formatted. Some modifiers can only work with specific data types, or require

explicitly defined length.

Supported modifiers:

‘+’ Forced sign (works only with decimal numbers)

‘-‘ Space for ‘-‘ sign (works only with decimal numbers)

‘<’ Left-aligned result (require specified field length)

‘>’ Right-aligned result (require specified field length)

‘^’ Centred result (require specified field length)

‘*’ Fill with characters (require specified field length)

(followed by a mandatory character which

specifies the fill character)

The modifier ‘*’ can be found twice within an instruction. The first occurrence

specifies the fill character before the result. The second occurrence specifies the

fill character after the result. Both fill characters are considered as space by

default, unless changed with the modifier.

The “length” part defines the minimum total size of the output field. If the

parameter is numeric and the suggested length is insufficient to accommodate

it, then the output field automatically beyond the defined length value. Text

data however does not expand beyond specified length but is trimmed to the

specification.

Without defined length the output will be as long as it needs to be.

Decimal numbers may also need to contain digits after a decimal point. To

specify the number of required digits in the output, the part “.precision” is used.

Both “length” and “.precision” (whenever used) must be integer decimal

numbers greater than 0.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 27

If “length” is missing, but “precision” is present in the format specification, the

number is output with the needed number of digits before the decimal point,

and only the specified number of digits after it.

Examples:

print $”Current time: |d*02>:|d*02>:|d*02>”, h, m, s; ‘ print time hh:mm:ss

var text s= $”|t^80*<*>”, “ TITLE LINE ”; ‘ the text “TITLE LINE” centred

‘ within an 80-character field

var text s= $”Amount: |>10.2, New: |>-10.2”, total, new ‘ create formatted

 ‘ text with numbers

5 UNITS

5.1 Defining Data Structures

Rittle enables the creation of more complex data types and data structures

called “units”. They can be created by using the words “unit” and “endunit” to

enclose one or more variables in a structure that from that moment on, behaves

as a single variable. In an example:

unit person;

 var text name;

 var byte age;

endunit;

This definition creates a data structure called “person” with two fields – for

name and for age. Then the structure can be used or assigned to other variables

in a normal manner just like other data types:

var person sender, recipient;

will create two record of type “person” and names “sender” and “recipient”.

The individual fields within a definition are accessed through their local names

following the name of the definition and a ‘.’ character:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 28

sender.name

sender.age

A structure may be formed of lower level structures. For example:

unit mail;

 person sender;

 person recipient;

endunit;

This definition combines both persons from above into a single record “mail”.

Accessing the data fields in this case will follow the levels of the structure. For

example: mail.sender.name will refer to the text field “name” in sub-definition

“sender”.

5.2 Structural Arrays

Units can be combined in arrays just like the other single data types. A unit

structure can be declared as a single variable array just like any normal variable:

unit something[10];

 var int member1;

 var text member2 maxlen [30];

endunit;

The example above creates a 10-element array of units with common name

“something”. The access to individual elements in a unit has a standard format:

unit_name . member [. member …] [index [: index …]]

In an example with the unit from above:

something.member1[3] will refer to the variable “member1” in the fourth

unit structure (arrays always start from index 0).

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 29

When a unit is used as data type for another variable, which is array, then the

number of dimensions are getting increased accordingly. For example:

var something newer[15];

This will crate a unit structure “newer” built from unit structures “something”.

But in the previous example “something” is actually an array of 10 elements, so

the new variable “newer” will inherit the original dimension, and add its own on

top of it. As result the new variable will have two dimensions: [10] inherited from

“something” and [15] as declared in “newer”. Therefore accessing elements will

require two indexes:

newer.member1[3:7]

In case internal member variables in a unit also have their own dimensions,

those are added as junior level indexes when accessing the member variables:

Let’s consider this unit:

unit pack;

 var int ival[12];

endunit;

var pack p[20];

The newly defined variable is built from 20 units of type “pack”, each one of

which containing a single member array “ival[12]”.

Accessing “p” would look like this: p.ival [p_index : ival_index]

Generally speaking indexes are always added by seniority of declaration – units

first, then member units (if any), top-level indexes, and finally individual indexes.

Working with units containing too many indexes may become very confusing, so

as a rule of thumb it is always good to optimise and keep the number of needed

dimensions as low as possible. Internally the RVM always convers all multi-

dimensional arrays to a single-dimension flat array, so from developer’s

perspective maintaining a close proximity to how data is actually being stored in

memory can be only beneficial for the reliability of the program.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 30

6 CONSTANT DATA ARRAYS

Constant data arrays are data pieces embedded directly into the program code

so they can be always available to the program. They also occupy almost no

memory in the RAM thus leaving more for actual data.

Data constants are defined in a way somewhat similar to variables but much

simpler:

data type name = value, …;

The only required information for the definition is the data type and the name

of the data constant. The compilator does the rest by automatically sizing the

array according to the number of following values.

The initialisation part after the ‘=’ sign, is mandatory.

Once defined, a constant data array is accessible in the same way as a one-

dimensional array from variables of the defined type. And again, like all arrays

in Rittle, indexes always start from 0.

Constant data arrays are read-only. Writing is not permitted. An attempt to do

so will generate a program execution error.

Example:

data text days = “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,

“Saturday”, “Sunday”;

This example will create a constant data array of text type with name “days”,

and it will contain the names of all days in the week. Accessing element [0] for

instance, will return “Monday”, element [5] will return “Saturday”, etc.

Another example:

data byte month_days = 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31;

This constant data array defines 12 elements with the number of days for every

month in a year. Accessing “month_days[4]” will return 31 (the number of days

in May), etc.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 31

By using the type “any” constant data arrays can be made of mixed type. They

can be read out in dedicated variables of the specified type, or in a variable of

type “any”, and then processed further with the help of the function type():

data any people = “Annie”, 24, “Michael”, 46, “William”, 51, “Catherine”, 39;

var any temp;

var int index=0;

while index < count(@people[]);

temp = people[index++];

 if type(temp)==30; ‘ the name of the person

 print “Name: “,temp,”_r_n”;

 else; ‘ the age of the person

 print “Age: “,temp,”_r_n”;

 endif;

until;

It is important to point out that constant data arrays can only be built from single

data type constants but not from units.

7 PROGRAM CONTROL STRUCTURES

7.1 Conditional Branch

Conditional statements use the traditional structure in many programming

languages “if” … “else” … “endif”.

In Rittle this structure is expanded by allowing multiple “else” statements with

their own conditional expressions.

The full format is (unlimited number of “else” statements is allowed):

if condition1;

 ……. here if condition1 is true …….

else condition2;

 ……. here if condition2 is true …….

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 32

else condition3;

 ……. here if condition3 is true …….

…………

else conditionX;

 ……. here if conditionX is true …….

else;

 ……. here otherwise …….

endif;

Note the semi-colon ‘;’ characters completing every statement. Without a semi-

colon in the proper place, a statement may come to a completely different

meaning during execution or generate an error during compilation.

All “else” branches are optional. The opening “if” and the closing “endif”

however must be present in every structure.

The final “else” may have no condition but still has the statement closing semi-

colon. It catches all cases uncovered by any other branch in the structure.

7.2 Loop

Unlike other programming languages, Rittle offers only a single loop structure.

It is however flexible enough to cover all needs.

The format it:

while [condition1]; ’ Repeating the loop while this condition is true

 ……. body of the loop structure …….

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 33

until [condition2]; ’ Repeating the loop until this condition become true

The loop can have none, one, or two conditions. Note again the closing semi-

colons after the conditions. These semi-colons are required even if there is no

conditional expression.

Condition1 gets checked before the body of the loop. If true, the loop continues

with the iteration. If false, the loop ends and continues with the code after

“until”.

Condition2 gets checked after the body of the loop. If false, the loop closes and

returns back to the “while” (and to check again condition1). If condition2 is true,

the loop ends, and the execution continues after it.

If both conditions are missing, the loop becomes an infinite loop, and can be

stopped only with an “exitloop” command.

An example of a loop performing 100 iterations:

var small a=0;

while a<100;

 ……. Something to do here …….

 a=a+1;

until;

The popular “for()” programming structure in other languages can be easily also

expressed in Rittle. An example below is for a loop with 1000 iterations:

var small a=1000; while(a--);

 ……. Something to do here …….

until;

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 34

7.3 Exit and Repeat

There are two types of exit in Rittle – exit from function and exit from loop.

“exitfunc” allows an early exit from function. It can be anywhere in the

function’s body and in as many places as needed.

“end” similar to “exitfunc” but used only in the main program body outside of

any function. Forces the program to finish execution.

The command “end” cannot be used within a function and will generate an error

during compilation. Only the main program can end itself.

“exitloop” offers an early exit from a while…until loop structure.

“repeat” in a while…until loop structure, forces an early return to the opening

“while” without having reached the corresponding “until”.

7.4 Labels

Rittle allows placing labels in the source text. A label in Rittle is a single valid

identifier starting with a ‘!’ character. It is a marked place in the program, where

the execution can be taken by using the name of that marked place.

Jumping to a label is done by placing its name as a normal word. Any time a word

which is a known label, is reached, the execution unconditionally jumps to the

spot marked with that label.

Here is a small example of a loop created by using a jump label:

var small a=0;

!loop

 ……. Something to do here …….

 a=a+1;

if a<10; loop; endif;

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 35

Note that there is no semi-colon character after the label. This is because the

label itself does not make a valid statement, but rather marks the beginning of

one. Jumping to a label however, is a valid statement in its own right because it

instructs a certain action to be taken. Hence it does have a closing semi-colon.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 36

8 PARALLEL PROCESSES

Rittle offers multitasking at ground level. The RVM takes care of background

work while from programmer’s perspective the functionality is contained within

only two reserved words – “pproc” and “ppterm”.

In an example:

func task1;

 ……. Something to do here …….

endfunc;

pproc task1; ’ run task1 as a parallel process

 ……. Main body continues here while task1 now works in parallel …….

As it can be seen, parallel processes are normal functions (which can still be

executed as such). The word “pproc” creates a separate time-sharing process in

which the function with name following “pproc” runs. Once the corresponding

“endfunc” is reached, the parallel process terminates just like a normal function

exit. A function running as parallel process can still execute any other function

(including itself), as well as contain nested functions. It can also start other

parallel processes.

A parallel process can terminate itself in the standard ways to end a function. It

is also possible the process to be terminated from the main program body (only)

by using the word “ppterm” followed by the name of the process’ entry function

as specified in “pproc”. An attempt to terminate a process from within another

process will cause the program to exit with an error message.

NOTE: The main program body has priority over all other parallel processes.

Once the main body finishes execution, all other parallel processes are also

automatically terminated.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 37

9 REFERENCE OF THE BUILT-IN FUNCTIONS

Full list of the built-in core functions in Rittle. Note that these are only the

hardware-independent functions, while any others specific for a particular

platform are described separately.

9.1 Mathematical Functions

9.1.1 sin

Format:

real= sin (real_x);

Calculate and return sin(x). The parameter should be in radians.

9.1.2 cos

Format:

real= cos (real_x);

Calculate and return cos(x). The parameter should be in radians.

9.1.3 tan

Format:

real= tan (real_x);

Calculate and return tan(x). The parameter should be in radians.

9.1.4 asin

Format:

real= asin (real_x);

Calculate and return arcsin(x). The parameter should be in radians.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 38

9.1.5 acos

Format:

real= acos (real_x);

Calculate and return arccos(x). The parameter should be in radians.

9.1.6 atan

Format:

real= atan (real_x);

Calculate and return arctan(x). The parameter should be in radians.

9.1.7 hsin

Format:

real= hsin (real_x);

Hyperbolic sine function.

9.1.8 htan

Format:

real= htan (real_x);

Hyperbolic tangent function.

9.1.9 trim

Format:

integer= trim (real_x);

Return the integer part of x.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 39

9.1.10 abs

Format:

real= abs (real_x);

Return the absolute value of x.

9.1.11 sign

Format:

integer= sign (real_x);

Return 1, if x>0

Return 0, if x=0

Return -1, if x<0

9.1.12 deg

Format:

real= deg (real_x);

Convert x from radians to degrees.

9.1.13 rad

Format:

real= rad (real_x);

Convert x from degrees to radians.

9.1.14 log

Format:

real= log (real_x);

Decimal logarithm of x.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 40

9.1.15 ln

Format:

real= ln (real_x);

Natural logarithm (base ‘e’) of x.

9.1.16 exp

Format:

real= exp (real_x);

Natural exponent ex.

9.1.17 E

Format:

real= E;

Return the value of ‘e’.

9.1.18 PI

Format:

real= PI;

Return the value of π.

9.1.19 random

Format:

real= random;

Return random number between 0 and 1. The number may be 0 but is never 1.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 41

9.2 Text Functions

9.2.1 val

Format:

real= val (text_arg);

Return the numerical value of the argument.

Assuming that the argument is a decimal number represented in text form.

9.2.2 format

Format:

text= format (text_fmts [, any, any, …]);

Formatting function.

See Chapter “Text Formatting”.

9.2.3 sim

Format:

real= sim (text_arg1, text_arg2);

Return the level of similarity of two texts, as number between 0 and 1.

9.2.4 search

Format:

integer= search (text_what, text_where, integer_index);

Search for the first occurrence of text parameter “what” in text parameter

“where”, starting from position “index”.

The valid range for “index” starts from 0.

Will return index of the beginning of the found occurrence, or -1, if none if found.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 42

9.2.5 insert

Format:

insert (text_what, text_where, integer_index);

Insert the text parameter “what” into text parameter “where”, starting from

position “index”.

The valid range for “index” starts from 0.

9.2.6 char

Format:

text= char (integer_ascii);

Return a single-character text with the character representation of ASCII code x.

9.2.7 code

Format:

integer= code (text_arg, integer_index);

Return the ASCII code of the character pointed by the index, from the text

argument.

9.2.8 cut

Format:

text_cut [, text_remainder]= cut (text, integer_begin, integer_count);

Cut and return substring from the text parameter s, starting from index “begin”

and “count” characters long. Optionally also returns the remaining portion of

the text argument without the cut part.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 43

9.3 Files and File Storage Devices

Currently supported file devices are:

IFS: Internal file storage. This volume uses the part of the internal non-

volatile memory in the system. The IFS: drive is always present and

Rittle mounts it as default.

RAM: Internal RAM storage. Uses part of the system RAM to organise a

drive which is available for sharing information between programs,

or to store temporary data. The information in the RAM: drive is

destroyed on reset or power loss, and the system normally starts

without it. In case it is requires, it can be initialised at any time to

make it available.

SDx: (x=1,…) External (SD card) storage using an externally connected SD

card.

File names may be preceded by path e.g. sd1:/dir/dir/file

It is important to know that in Rittle all file functions work with the currently

mounted drive. The only exception to this is copy() which can work with two

drives simultaneously.

9.3.1 init

Format:

integer= init (text_devspecs);

Initialise device and return size of the available data after initialisation, or a

negative number in case of an error.

In case of data storage this function will destroy all data currently on the device.

9.3.2 mount

Format:

integer= mount (text_devspecs);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 44

Make specified storage drive current for operations. Return 0 in case of success,

or a negative number in case of an error.

9.3.3 where

Format:

text= where;

Return the current drive and directory set for file operations. Will return blank

string in case of an error.

9.3.4 delete

Format:

integer= delete (text_filespecs);

Delete specified file from data storage device. Return 0 if successful, or a

negative value result, otherwise.

9.3.5 rename

Format:

integer= rename (text_filecurr, text_filenew);

Change the name of a file or move it to new directory. Return 0 if successful, or

a negative value result, otherwise.

9.3.6 copy

Format:

integer= copy (text_file, text_path);

Copy file from the current file storage device to a new place specified in the

‘path’ parameter. The parameter may include a drive and directory. File name

must be included in the path regardless of whether it is the same or different.

Return 0 if successful, or a negative value result, otherwise.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 45

9.3.7 open

Format:

integer_handler= open (text_filespecs);

Open file for read and write operations. If the file already exists, it is open for

appending data and the file pointer is positioned at the end of the existing data.

If the file does not exist, it is automatically created and the file pointer is

positioned at the beginning of the file.

The “filespecs” parameter specifies path and name: “device:/dir/…/filename”

File handler number is returned in case of success, or a negative value in case of

a failure.

9.3.8 close

Format:

integer= close (integer_handler);

Close file with provided handler. A successful closing will return result 0,

otherwise a negative value result will indicate an error.

9.3.9 isopen

Format:

integer= isopen (integer_handler);

Return 1, if the provided file handler is open, or 0 otherwise.

9.3.10 fpos

Format:

integer= fpos (integer_handler);

Return the current file pointer position within an open file with provided

handler, otherwise return -1.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 46

9.3.11 eof

Format:

integer= eof (integer_handler);

Return 1, the data pointer has reached the end of data stream with the provided

handler, or return 0 otherwise. Will return -1 is the file is not open.

9.3.12 ioerr

Format:

integer= ioerr (integer_handler);

Return error code for the specified handler, or 0 if there is no error. The error is

cleared after that.

9.3.13 seek

Format:

integer= seek (integer_handler, integer_position);

Move the data pointer to the specified position (starting from 0) and return 0 if

successful, or a negative value result, otherwise.

9.3.14 fsize

Format:

integer= fsize (integer_handler);

Return file size in bytes, if the provided file handler is open, or negative result

value in case of an error.

9.3.15 write

Format:

integer= write (integer_handler, ref_var, num_bytes);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 47

Write data to open file with provided handler. Return the number of actually

written bytes, or a negative number in case of an error.

The data is provided by referencing a variable. It is very important for the

developer to ensure that the data size given in the parameter “num_bytes” is

not greater than the actual size of the referenced variable or buffer.

9.3.16 read

Format:

integer= read (integer_handler, ref_var, num_bytes);

Read data from open file with provided handler. Return the number of actually

read bytes, or a negative number in case of an error.

The incoming data is stored in a buffer provided by referencing a variable. It is

very important for the developer to ensure that the data size given in the

parameter “num_bytes” is not greater than the actual size of the referenced

variable or buffer.

9.3.17 ffirst

Format:

text= ffirst (text_pattern);

Return the name of the first file that is matching the specified pattern. If there

are no matching files, a blank string is returned.

9.3.18 fnext

Format:

text= fnext;

Return the name of the next file that is matching the specified pattern given in

the last executed ffirst(). If there are no matching files, a blank string is returned.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 48

The ffirst/fnext pair of functions are allocated and maintained individually for

each parallel process in order to avoid cross-process confusions.

If fnext() is executed without a preceding ffirst(), the behaviour is undefined.

9.3.19 mkdir

Format:

integer= mkdir (path);

Make a new directory and return 1 if successful, or 0 otherwise.

This function can be executed on data storage devices only. It will return 0 if an

attempt is made to use it in other devices.

9.3.20 rmdir

Format:

integer= rmdir (path);

Remove directory and return 1 if successful, or 0 otherwise. The directory must

be empty in order to be removed.

This function can be executed on data storage devices only. It will return 0 if an

attempt is made to use it in other devices.

9.3.21 chdir

Format:

integer= chdir (path);

Change the current directory directory and return 1 if successful, or 0 otherwise.

This function can be executed on data storage devices only. It will return 0 if an

attempt is made to use it in other devices.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 49

9.4 Multitasking

9.4.1 pproc

Format:

pproc (label);

Start new parallel process.

For additional details, see paragraph “Multitasking”.

9.4.2 pterm

Format:

pterm (label);

Terminate parallel process.

For additional details, see paragraph “Multitasking”.

9.5 Others

9.5.1 include

Format:

include “file”, “file”, ...;

Include specified Rittle source files during compilation.

Not an actual function but instruction to RSC to include source code from

external text files into the compilation process. Does not produce own executing

code.

The inclusion happens at the exact spot where “include” is placed. If more than

one file is specified, all are included and compiled sequentially.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 50

9.5.2 run

Format:

run (text_filename);

Run and external executable file. The file can be either a normal compiled .RXE

file, or a system commands batch .SYS file. The current program is terminated

and removed from the memory, and the new file is loaded and started instead.

9.5.3 platform

Format:

text, text= platform;

Return the platform identifier in the first receiver variable, and the software

version in the second one.

9.5.4 freemem

Format:

integer= freemem;

Return the size in bytes of the data memory currently available. The amount of

free memory shows the total amount of free memory blocks. These blocks may

not be forming a contiguous area and in systems with high level of memory

fragmentation the actually available free memory in the form of a single block

may be smaller.

9.5.5 uptime

Format:

Integer= uptime;

Return the number of microseconds passed since the beginning of execution of

the current code in RVM.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 51

9.5.6 wait

Format:

wait (integer_usec);

Perform a delay for specified number of microseconds.

If the parameter is a positive number, the delay is non-blocking, i.e. only the

current process is paused while all other processes continue their execution. If

the parameter is a negative number, then the function executes a blocking delay

and all parallel processes pause until the delay is complete.

The accuracy of “wait()” depends on a number of factors, but generally, the

blocking delays are much more accurate.

9.5.7 tick

Format:

tick (integer_usec, @func_ref);

Periodically execute a function at specified interval in microseconds. The exact

timing of the call is not guaranteed more than the fact the function will be

executed after at least the specified number of microseconds have passed.

Value 0 in the period will disable further calls to the function.

All parallel processes have independent tick counters, however, only one tick

function is possible per process.

Example:

tick 1000000, @myfunc;

The function myfunc() will get executed every 1 second.

An important requirement for tick-handling functions are not to have any input

or output parameters.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 52

9.5.8 type

Format:

integer= type (any);

Return a number indicating the data type of the argument. This function is

particularly useful in conjunction with variables of type “any” to determine the

type of data stored in the variable.

The function can be used on everything in Rittle - constants, variables, data

arrays.

Data type codes returned by the function are:

0 invalid

16 any

18 byte (sint8)

20 small (sint16)

22 int (sint32)

24 big (sint64)

28 real

30 text

31 func

9.5.9 size

Format:

integer= size (any);

Return the size of the argument in bytes. If the argument is text, then will return

the length of the text.

If the argument is reference to a variable, then the function will return the size

of the variable in memory. In case the variable is text, its length will be returned,

and if the variable is an array, the sum of all its elements will be returned.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 53

9.5.10 clear

Format:

clear (@var);

Clear the referenced variable. If the variable is an array, the entire array will be

cleared.

Examples:

clear @a;

clear @b[];

9.5.11 isword

Format:

integer= isword (text);

Will return 1 if the supplied text parameter is a valid Rittle word, otherwise will

return 0. This function can be used to determine whether words supporting

some specific functionality are present in a system.

9.5.12 count

Format:

integer= count (any);

Return the number of elements in an array. If the array is multidimensional, the

function will return the actual number of elements in all dimensions combined.

When used with single variables it will always return 1.

It is important to notice that since this function refers to a variable itself, but not

to the value of that variable, the correct calling syntax is by using a reference:

Example:

var byte a [10:10];
print count(@a[]);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 54

9.5.13 isval

Format:

integer= isval (any);

Return 1, if the argument is a number, otherwise return 0.

If the argument is supplied as text, then an assessment is made whether the text

contains a representation of a number.

9.5.14 bit

Format:

integer= bit (integer);

Will return an integer number equivalent to 2(parameter). The parameter itself is in

integer number in the range from 0 to 63.

9.5.15 userbrk

Format:

userbrk (integer);

Enable (when the parameter is not 0) or disable (when the parameter is 0) the

Ctrl-C break by the user during execution. By default the user break functionality

is always enabled and can be disabled only for the currently executed program.

9.6 User Interface and Graphics

9.6.1 print

Format:

print (any [, any, any, …]);

Output of one or more parameters to the console. The parameters can be

variables, constants, or expressions. The type of the parameters determines

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 55

automatically the form in which data is presented – texts are output directly,

numbers are represented in their decimal text form.

9.6.2 CRLF

Format:

text= CRLF;

Return a two-character string composed of the ASCII codes CR (0x0d) and LF

(0x0a). An equivalent to “_r_n”.

9.6.3 conch

Format:

variable[, variable, variable, …]= conch;

Return immediately with the next single character from the console input buffer

or return blank string if the buffer is empty.

The function does not wait for characters to arrive from the console.

9.6.4 conrd

Format:

variable[, variable, variable, …]= conrd;

One or more variables are read from the console. The natural output from conrd

is text, if inputting numbers is required, then the val() function should be used

additionally in the form “val(conrd)”.

The total length of the line read at once could be up to 255 characters long.

Reading is terminated by receiving an ASCII code 10 (LF). The terminating code

is not passed on to the output.

Note that “conrd()” is a blocking function. This means that whenever it needs to

be executed, ALL parallel processes stop until the function produces its result.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 56

9.6.5 cls

Format:

cls;

Clear the attached screen device and fill the screen with the currently selected

background colour.

The background colour is the one set by the gpattr() function. Its default value

is 0 and in the vast majority of displays that corresponds to black colour.

If the current background colour is set as transparent, the function will use

colour 0 for clearing the screen.

On the system console outputs 250 blank lines.

9.6.6 gpattr

Format:

gpattr (int_Fcol, int_Bcol, int_scale);

Specify text attributes for the current font for gprint(). The first parameter

defines the main font colour, the second parameters specifies the background

colour, and the third parameter is the font scale.

When any of the colours is defined as negative number, it becomes transparent.

The colours are provided in 24-bit values that correspond to RGB:888 format. In

many displays however, the colour is actually an 18-bit RGB value in bit format

6--:6--:6--, where the ‘– ’ bits don’t matter and are typically set in 0. Therefore,

in an example, colour 0xAD237A will be the same as colour 0xAC2078, because

the RGB bitmask of the first is 10101101:00100011:01111010, and that

converted to 18-bit format takes the form 10101100:00100000:01111000.

The function has no effect in the console or on text-only displays.

9.6.7 gprint

Format:

gprint (int_posX, int_posY, any [, any, any, …]);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 57

Performs as the normal print() function, but on the attached graphics display

device only. It takes the first two parameters as display coordinates from where

the output will start.

Nothing is sent to the console.

The function also ignores the functionality of the special ASCII codes below code

32, and prints their defined graphical images instead. Therefore, the text

constants such as “_r” or “_n”, are drawn as characters.

gprint() uses the currently installed font with the currently set attributes for

colour and scaling.

9.6.8 pixel

Format:

pixel (int_x, int_y, int_colour);

Draw single pixel with specified colour. If the coordinates are outside of the

screen boundaries, nothing is drawn.

The function has no effect in the console or on text-only displays.

9.6.9 fill

Format:

fill (int_x, int_y, int_colour);

Implements “flood fill” with specified colour in an enclosed area. The

parameters X and Y can be any point within the area, and the colour of the pixel

at position (x,y) defines the background colour that will be replaced by the fill

colour. The area is filled using the colour specified in the last parameter of the

function.

NOTE:

The fill() function requires reading from the display memory. Some cheap

displays on the market don’t have the relevant data pins exposed and available

for use. The function will be unable to operate normally with those displays.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 58

9.6.10 line

Format:

line (int_x1, int_y1, int_x2, int_y2, int_colour);

Draw line from screen coordinates (x1,y1) to screen coordinates (x2,y2), with

specified colour. If any part of the line is outside of the screen boundaries, only

the visible remainder is drawn.

The function has no effect in the console or on text-only displays.

9.6.11 circle

Format:

circle (int_x, int_y, int_radius, int_colour);

Draw circle with centre at coordinates (x,y) and specified radius. If any part of

the circle is outside of the screen boundaries, only the visible bit is drawn.

If the colour is specified as negative number, only the outline of the circle will

be drawn, otherwise if the colour is a positive number, the circle will be solid.

The function has no effect in the console or on text-only displays.

9.6.12 ellipse

Format:

ellipse (int_x, int_y, int_xradius, int_yradius, real_tilt, int_colour);

Draw ellipse with centre at coordinates (x,y) and x-radius and y-radius. If any

part of the ellipse is outside of the screen boundaries, only the visible bit is

drawn.

In cases when the X-radius is equal to the Y-radius, the ellipse becomes a circle.

If the colour is specified as negative number, only the outline of the ellipse will

be drawn, otherwise if the colour is a positive number, the ellipse will be solid.

The tilt parameter defines an angular tilt for the ellipse’s coordinate system in

relation to the native screen coordinates. The parameter is a real number given

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 59

in radians. When this parameter is 0.0, i.e. there is no tilt, then the coordinate

system of the ellipse match exactly the coordinate system of the screen.

Although not limited, the actually useful range for the tilt parameter is between

-3.14 and +3.14 radians (negative Pi to Pi), since all values outside will replicate

the same results.

The function has no effect in the console or on text-only displays.

9.6.13 triangle

Format:

triangle (int_x1, int_y1, int x2, int_y2, int_x3, int_y3, int_colour);

Draw triangle specified by the coordinates of its three defining points. If any part

of the triangle falls outside of the screen boundaries, only the visible remainder

is drawn.

If the colour is specified as negative number, only the outline of the triangle will

be drawn, otherwise if the colour is a positive number, the triangle will be solid.

The function has no effect in the console or on text-only displays.

9.6.14 rect

Format:

rect (int_x1, int_y1, int_x2, int_y2, int_colour);

Draw rectangle whose top-left corner is specified with the coordinates (x1,y1)

and bottom-right corner at coordinates (x2,y2). If any part of the rectangle falls

outside of the screen boundaries, only the visible remainder is drawn.

If the colour is specified as negative number, only the outline of the rectangle

will be drawn, otherwise if the colour is a positive number, the rectangle will be

solid.

The function has no effect in the console or on text-only displays.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 60

9.6.15 gput

Format:

gput (int_x1, int_y1, int_x2, int_y2, ref_sint32_var);

Move defined rectangular area from a referred variable on to the screen within

specified coordinates range. The variable is must be a one-dimensional or multi-

dimensional array with total number of elements equal or greater than the

needed minimum which is calculated as:

needed_bytes = (x2-x1+1) * (y2-y1+1) * 3

The formula above assumes the following conditions are met: (x2 ≥ x1), (y2 ≥ y1)

The function automatically reorders internally the input parameter in order to

meet the conditions above for proper calculation.

If the size of the referred variable does not have enough number of elements,

the function will terminate its work once the entire array has been processed.

The last multiplication in the formula above is needed because the colour of

every pixel on the screen is stored in three consecutive bytes for red, green, and

blue, respectively. Since the “sint32” type (also defined as “int”) is 32-bit, its size

is enough for a single pixel 24-bit colour.

If the colour value for a pixel is negative number it is ignored and the colour of

the relevant pixel on the screen remains unchanged.

Example:

gput (25, 15, 49, 34, @figure[]); ‘ put 25x20 pixels bitmap figure[] at

‘ screen coordinates (25,15)

9.6.16 gget

Format:

gget (int_x1, int_y1, int_x2, int_y2, ref_sint32_var);

Get defined rectangular area from the screen into a referred variable. The

variable is must be a one-dimensional or multi-dimensional array with total

number of elements equal or greater than the needed minimum which is

calculated as:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 61

needed_bytes = (x2-x1+1) * (y2-y1+1) * 3

The formula above assumes the following conditions are met: (x2 ≥ x1), (y2 ≥ y1)

The function automatically reorders internally the input parameter in order to

meet the conditions above for proper calculation.

If the size of the referred variable does not have enough number of elements,

the function will terminate its work once the entire array has been processed.

The last multiplication in the formula above is needed because the colour of

every pixel on the screen is stored in three consecutive bytes for red, green, and

blue, respectively. Since the “sint32” type (also defined as “int”) is 32-bit, its size

is enough for a single pixel colour. Although it also creates a 25% redundancy in

the occupied bytes in memory, using the sint32 type offers backward

compatibility with the gput() function, and allows further manipulation of the

pixel colours and conversion into transparent without need for additional

buffers.

After execution, the referred variable contains a copy of the screen area with

the colour of every pixel stored in a separate 32-bit array element.

NOTE:

The gget() function requires reading from the display memory. Some cheap

displays on the market don’t have the relevant data pins exposed and available

for use. The function will be unable to operate normally with those displays.

9.6.17 font

Format:

font (ref_sint8_var);

Set a new font to be used by all text output functions on the externally attached

display device.

The parameter points to a sint8 (“byte”) type array which contains the binary

definitions for the font.

Every font in Rittle has the following standardised structure (all fields are byte):

startL, startH 16-bit number that specifies the character code of the first

character in the font. It must be greater than 0 since code 0

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 62

is reserved for end of string indication and cannot be

displayed.

 In standard ASCII fonts, currently supported by Rittle, the

character codes are always 8-bit, so the high byte in this field

should be kept 0.

countL, countH 16-bit number that tells how many character definitions are

included in this font. Rittle currently supports only 8-bit

character codes, so although more characters can be defined

in the font, the actually usable range is up to 255 characters

and the high byte should be kept 0.

width Pixel width of a single character.

 This parameter specifies the number of columns in the

characters. In fonts where this field is 0, every character

definition starts with an additional byte that defines how

many columns are present in that character only.

In fonts with fixed width where the “width” parameter is

greater than 0, the leading width-specifying byte in every

definition is missing since the width is already know for all

characters.

height Pixel height of a single character.

 Although they could be different in width, the height of all

characters in the font is the same.

 The actual number of bytes for every character definition

depend on the width and height of the font combined: for

fonts with height 8 lines or less, every byte represents one

column, for fonts with height 16 lines or less, every column

takes two bytes, and so on. Then the width specifies how

many columns are needed for the entire character.

 Bit counting starts from bit 0 which represents the top pixel,

bit 1 is the one below, and so on. For fonts with more than 8

lines the counting continues in the same fashion on the

following byte. If the number of lines in the font are not

divisible by 8, the remaining bits in the last byte of every

column remain unused, not displayed, and should be kept 0.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 63

blankL Number of blank columns to add on the left side of every

character.

blankR Number of blank columns to add on the right side of every

character.

blankU Number of blank rows to add on top of every character.

blankD Number of blank rows to add under every character.

name ... 0x00 Text name of the font. The text must finish with a byte 0. If

there is no name, then this field contains only a single byte 0.

The actual character definitions start after this font header.

Every character is defined as a bit mask within one or more bytes. The characters

have consecutive codes, starting from the code specified in the “start” field in

the header, and going on for the number of “count” characters. There are no

separators between two neighbouring definitions. Rittle works out the numbers

from the values supplied in the font header.

Font definition examples:

1. The definition of character ‘A’ in a font with fixed width 5 (the “width” field

in the font header has value 5 and that defines that all characters in the font

will be within 5 columns) and height 7:

0x7C, 0x12, 0x11, 0x12, 0x7C

This sequence of bytes looks like this:

 7c 12 11 12 7c

0 #
1 # #
2 # #
3 # #
4 # # # # #
5 # #
6 # #
7 not used

In addition to the definition, in the font header there are fixed definitions for

certain number of blank pixels to be added to all sides of every character in the

font.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 64

2. Definition of character ‘W’ in a font with variable width (the “width” field in

the font header has value 0) and height 14 pixels.

Since the width is variable, every character in the font has its own width, and

that is specified in one additional byte at the beginning of every character

definition.

The particular character in this example has 12 columns, and every column is

described by two bytes. Since by definition the font has maximum height of

14 pixels, the last two bits in the second byte will remain unused and they

are not displayed on the screen.

The definition will look like this:

12, 0x01,0x00, 0xFE,0x01, 0x00,0x07, 0x00,0x20, 0x20,0x18, 0xE0,0x07,

0x20,0x1e, 0x00,0x20, 0x00,0x18, 0xFE,0x07, 0x01,0x00

 01 fe 00 00 00 20 e0 20 00 00 fe 01

0 # #
1 # #
2 # #
3 # #
4 # #
5 # # # # #
6 # # #
7 # # #

 00 01 07 1e 20 18 07 1e 20 18 07 00

8 # # # #
9 # # # # #

10 # # # # #
11 # # # #
12 # # # #
13 # #
14

not used
15

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 65

All character definitions start immediately after the font header, and follow up

in sequential order, so in the example above, after the character ‘W’ will follow

character 'X', then character ‘Y’, and so on.

Example of the font() function use:

data byte myfont =

 32, 0, ‘ the font starts from code 32 (space character)

 1, 0, ‘ there is only one character in the font

 8, ‘ the width is fixed at 8 columns

 8, ‘ the height will be 8 lines

 0, 1, 0, 1, ‘ blank pixels on left/right/up/down

 0, ‘ name of the font (no name)

 0, 0, 0, 0, 0, 0, 0, 0; ‘ definition of the first character in the font

font (@myfont[]); ‘ now “myfont” becomes the active font

9.6.18 shape

Format:

shape (int_x, int_y, text_def);

Draw vectored shape described in the text parameter, starting from coordinates

(x,y). This method is also known as “turtle graphics”. The text definition consists

of a number of micro-commands telling “the turtle” in what direction to do or

set the colour for drawing.

Spaces in the definition string are not needed and are ignored during translation,

however numbers cannot contain spaces within.

“C colour” This command sets the drawing colour. The colour can

be specified either as decimal or hexadecimal number

(starting with an ‘x’ character). In case of hexadecimal,

the leading ‘0’ character is only optional.

“F” Flood fill an area starting from the pixel ate the current

coordinates. The area is then filled with the last colour

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 66

set by the ‘C’ command. The colour parameter is given

following the same rules as for the ‘C’ command.

“N” Set transparent drawing colour. This is used when the

drawing pen needs to be lifted in order to go

somewhere else without drawing on the way there.

“M [stepsX] , [stepsY]” Move in specified direction for number of horizontal

and vertical steps. The steps are provided as a decimal

number that can be positive or negative.

 There is two parameters to this micro-command, and

they are separated by a comma. The first parameter

defines horizontal displacement, and the second one

defines vertical displacement. If any of the parameters

is not needed, it can be omitted, but the presence of

the comma is important to ensure the place of the

parameter.

Example:

shape (60, 30, "Cxff0000 M10,20 M20,10 M-20,10 M-10,20 Cx00ff00 M-10,-20

M-20,-10 M20,-10 M10,-20 NM,15 Cxff M,30 N M-15,-15

Cxff M30,");

 ‘ This definition will draw a four-rayed star with green left

‘ part and red right part, and a blue cross inside, starting from

‘ the top point at coordinates (60,30)

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 67

10 GLOSSARY OF THE CORE FUNCTIONS

This is the standard set of functions that form the core set of the Rittle language.

They don’t depend on the hardware configuration of the system and work with

the console only.

! ' '_ '! '!_ - -- $ * / \ \\ ^ ~ + ++

< << <= <> = == > >= >> abs acos and

any asin at atan big bit byte char chdir

clear close code conch conrd copy cos count

CRLF cut data deg delete E else end endfunc

endif endunit eof exitfunc exitloop exp ffirst

fnext format fpos freemem fsize func hsin

htan include if init input insert int ioerr

isopen isval isword ln log maxlen mkdir mount

not open or output PI platform pproc print

pterm rad random read real redim refer renvar

repeat rmdir run search seek sign sim sin

sint16 sint32 sint64 sint8 size small tan text

tick trim type unit until uptime userbrk val

var wait where while write xor

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 68

11 GLOSSARY OF THE GUI FUNCTIONS

These functions only work when a driver relevant to their functionality is

installed. Otherwise, they are valid and part of the always available Rittle’s

hardware-independent core, but provide no output on the system console.

circle cls ellipse fill font gget gpattr gprint

gput line pixel rect shape triangle

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 69

12 EXTREME PROGRAMMING WITH RITTLE

Extreme programming is techniques to squeeze out the maximum possible from

a programming language. Due to its very loose syntax rules, Rittle is quite

welcoming towards extreme programming. These techniques can save code

and, in some cases, speed up the execution a little, but in general they also make

the code difficult for understanding and maintenance. A careful balance

between extreme techniques and standard syntax structures is the best general

approach. Here is a short summary of some of the possible extreme

programming techniques in Rittle.

12.1 Group Assignments

Rittle has a very specific feature allowing multiple assignments to be made

within a single statement.

In some examples:

var small x, y, z = -1;

This will declare “x”, “y”, and “z”, and will assign value -1 to all of them.

var small x, y, z = -1, -2, -3;

This will declare “x”, “y”, and “z”, and will assign value -1 to ”x”, value -2 to “y”,

and value -3 to “z”.

There is also the possibility to skip the initialisation of some variables, while skip

assigning values to the others:

var small x, y, z = -1, , -3;

This statement will still initialise “x” and “z” but will do nothing about “y”.

The same is valid in statements outside of declaration, as well as other variables,

functions, and expressions. Even reusing variables within the same statement is

allowed:

 x, y, z = foo(1,2), (a+1), (y-2);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 70

In the most general case any number of variables can be sequentially initialised

with any number of values as long as the number of values is not greater than

the number of variables to be initialised. If the number of values is smaller than

the number of variables, all remaining variables will be initialised with the last

value from the list of initialising values.

Since the assignment is performed sequentially, it is possible to use group

assignment to perform various programming “tricks”:

x, y = y, x; ‘ swap the values of x and y without using a third variable

a, b, c = b, c, a; ‘ rotate values in three variables

12.2 Variables as Data Types

A very important feature in Rittle is that every variable immediately also

becomes a data type. Thus, the developer could define own data types for a

clearer source code.

Example:

var int size;

var size code_length;

It can be seen that the second variable “code_length” is of type “size” which is

actually a previously defined variable.

12.3 Renaming and Reusing Variables

Rittle provides the option to the developer to rename already defined variables

and use them again instead of defining new ones. This does not generate any

additional code but instead the RSC only renames variables to for better source

clarity. The word to do that is “renvar”:

renvar oldname, newname;

Units can be renamed as well. Note that renaming does not require specifying []

for arrays.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 71

12.4 Dynamic Arrays

Another useful feature of Rittle is the possibility to dynamically change the size

of an array variable, or even convert a single variable into an array.

In order for that to be done, the variable needs to exist already (has been

declared earlier with a “var” statement). Rittle provides a word “redim” which

is used to change the dimensions of already existing variables. This feature

significantly simplifies work with various lists and other structures with unknown

length as the developer can expand or reduce the structure as per the needs on

the go.

Example:

var int something[10]; ‘ the array is initially declared to have 10 elements

redim something[20]; ‘ the same array now has 20 elements

The word “redim” retains all existing data in the array, however if the new size

is smaller than the old one, the excess elements at the end of the array will be

lost. A special consideration must be given to re-dimensioning of multi-

dimensional arrays. Although it is technically possible, the results might differ

from the expectations, and the data elements might end up shifted away from

their original indexes, so ideally re-dimensioning should be done on one-

dimensional arrays only.

12.5 Multiple Comparisons

Rittle allows more complex comparison expressions consisting of more than two

parameters:

if 1< = x <= 10 > y;

is completely valid and translates as “if 1<=x and x<=10 and 10>y”.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 72

12.6 Increments and Decrements

Using both pre-modifier and post-modifier on the same variable at the same

time is completely valid and is allowed.

For example, the statement

b++=++a++;

is valid, and is equivalent to the sequence: “b=a+2, a=a+1”.

Even pre-increment (not post-increment, though) of numeric constants is

allowed when they are used in expressions:

++b++=++1+(++a--)+(++1);

12.7 Morphing Functions

Morphing functions exhibit different behaviour depending on some input

condition.

Within a function a few different blocks of declarations with “input”, “output”,

and “refer” type variables, can exist, and the execution to branch to a particular

part in the function, and that based on an external condition.

In an example:

func foo;

 var input small form; ‘ this value defines the behaviour

 if form==0;

 var input small a, b, c; ‘ the function takes three byte values

 var output real z; ‘ and returns one real

 ………………………………………

 ………………………………………

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 73

 else form==1;

 var input text s1, s2; ‘ the function takes two texts

 var output real t1, t2; ‘ and returns two texts

 ………………………………………

 ………………………………………

 else;

 var input int x, y; ‘ the function takes two integers

 var refer real p [10]; ‘ and refers to array

 ………………………………………

 ………………………………………

 endif;

endfunc;

12.8 Nested Functions

Rittle allows functions to be nested within other functions.

In the example below both functions myIntFunc1 and myIntFunc2 exist only

within the scope of myFunc.

func myFunc;

 func myIntFunc1;

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 74

 …………………..

 endfunc;

 func myIntFunc2;

 …………………..

 endfunc;

…………………..

endfunc;

12.9 Function Variables

Function variables are special type variables that refer to actual functions. With

function variables a function can be passed as an argument to another function,

array of function pointers can be created (call tables), or a function name can be

aliased for other purposes.

Physically the function variables are integer variables that contain the memory

address of the referred function. When a function variable is written to, an

integer value is stored. That value is assumed to be a start address of a function.

When read, a function variable simply calls the referred function.

12.9.1 Declaring Function Variables

Function variables are declared in the normal way for declaring variables. They

are of type “func”.

var func myvar = @foo;

This example declares a function variable “myvar” and assigns it the address of

the function foo(). Note the character ‘@’ in the assignment. It tells the RSC that

the word is about the address of the function foo().

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 75

Without the leading ‘@’ character, the function will be simply executed during

the initialisation phase, and its result (if any) will be assigned to myvar thus

resulting it pointing to a completely different address.

12.9.2 Using Function Variables

In the previous example a function variable named “myvar” was declared, and

initialised to point to the function foo(). Anywhere in the program from that

point further, the name “myvar” will cause the function foo() to be called.

If at certain point myvar needs to point to another function, it can be re-

initialised:

myvar = @newfoo;

This will change “myvar” to point to the function newfoo() instead.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 76

13 RIDE

The “Rittle Integrated Development Environment” (RIDE) is part of the Rittle

system and has the task to help facilitate writing programs, perform

compilation, generate executable files, as well as do basic debugging of the

written code.

RIDE is activated by a console command “ride” with optionally a file name

following the command.

Entering RIDE goes straight to its line text editor. The output looks like this:

IFS:/_ride

 1:

Now the text editor is positioned on line 1, and ready to accept text. Let’s start

writing in Rittle. It is important to know that every line can be edited by using

the left and right arrow keys, the keys and <BckSpc>. Text can be inserted

or removed, all done until an <Enter> key is pressed.

Another very important detail is, if the first character in a line is a ‘.’ Then RIDE

will interpret it is a command for the environment, and will try to execute the

following characters as one or more RIDE commands.

RIDE’s text editor is not a typical editor but a line-based one. This means that

what is shown on the screen is not necessarily how the text looks. Individual

lines can be displayed, edited, and then other lines displayed below them in a

non-sequential order. Using line editor brings several benefits. First, it does not

depend on the hardware in any way. The line editor will look the same way on a

small 2-line LCD as it will look on a large terminal screen. Display height and

width don’t matter. Another benefit is, once mastered, using a line editor does

actually make writing code quicker. For example, in a source of several hundred

or several thousand lines of code, a developer might find themselves frequently

scrolling up and down over large chunks of code in order to check and refer to

different parts of code. In RIDE this is achieved by typing short one-character

commands or sequences. In a short ‘dot-command’ line the developer could for

example jump to a line and change something. Compile and execute, or trace

code. RIDE also supports repeating the same command defined number of

times. This is very useful when searching and replacing, as well as during debug.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 77

Full help about the RIDE commands can be invoked by executing a command .H

IFS:/_ride

 1: .h

A single dot is enough for full command line with multiple commands
._ exit (text remains in the memory)
.Z clear screen (250 new lines) .H this information
.U undo the last edited line .? other useful information
.L [number of lines] [,] [starting from line number] list (recent or from)
.D <number of lines> [,] [starting from line number] delete lines
.I <number of lines> [,] [starting from line number] insert lines
.C <number of lines> [,] [starting from line number] copy lines at current
.M <number of lines> [,] [starting from line number] move lines to current
.[J] [line] or <N> or <P> jump to line or to next line or to previous line
.F [text to EOL] define 'Find' string to find or perform find function
.R [text to EOL] define 'Replace' string or perform find and replace
.O <NEW> or <file.RIT> start new blank file or open a file with given name
.S [file.RIT] save file (optionally can save with a new file name)
.* [number of times] repeat the following command line number of times

Rittle Compilation and Debug:
.. first enter step mode then execute single instruction in current process
.= first enter step mode then execute single instruction in all processes
.# <file.RXE> create executable file for RVM
.V <variable id> [, <linear index>] inspect variable
.\ inspect RVM stack for current process .[compile in mem [opts $%]
.B place/remove breakpoint .> run or continue after BP

 1:

After executing the help command, the editor returns back to the same line

waiting for text.

13.1 Writing Programs in the Text Editor

Let’s write a line:

 1: var byte a=0;

 2:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 78

After writing the line and pressing the <Enter> key, the text editor has accepted

the line, stored it in the memory, and ready for a new one. Let’s continue

further:

 1: var byte a=0;

 2: while a<10;

 3: print a++,CRLF;

 4: until;

 5:

At this stage we may decide to make a change somewhere in the source, for

example to change the number in the ‘while’ condition. For that, first we need

to go back to the line, but even before that we may want to see the program

again:

 5: .l

 1: var byte a=0;

 2: while a<10;

 3: print a++,CRLF;

 4: until;

 5:

Now we jump to the needed line:

 5: .2

 2: while a<10;

After jumping to line 2, the cursor positioned on its first character and now we

can edit the line.

Note that while over a line with text, any RIDE dot-commands that start from

the very beginning of the line, are executed without affecting the source code.

Thus while on line 2, if we jump back to the bottom of the source code by

command .0

 2: .0while a<10;

After <Enter> the rest of the line gets erased from view for clarity.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 79

 2: .0

 5:

13.2 Compiling and Executing Programs

We have now written a simple Rittle program to print the numbers from 0 to 9.

The program can be compiled and executed, stored in a file, or stored as a binary

executable file.

Compiling the program is done by dot-command .[

 1: var byte a=0;

 2: while a<10;

 3: print a++,CRLF;

 4: until;

 5: .[

lines compiled: 4

code length: 48 bytes

 5:

Now the program ready for execution with a .> command. In fact the entire

compilation and execution process could be expressed in a single line. We might

also like to see the compiled binary RVM code by inserting ‘%’ key before the ‘[‘

command (refer back to the help):

 5: .%[>

lines compiled: 4

code length: 48 bytes

000000 0f 4b b8 44 .reset K╕D

000004 00 .nop

000005 2a 12 01 00 00 00 .var .sint8 V1

00000b 12 00 .sint8 0

00000d 29 01 00 .set V1

000010 28 01 00 .get V1

000013 12 0a .sint8 10

000015 32 <

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 80

000016 0a 2e 00 00 00 .ifnot (addr 0x0000002e)

00001b 28 01 00 .get V1

00001e 28 01 00 .get V1

000021 49 .++

000022 29 01 00 .set V1

000025 38 CRLF

000026 3f print

000027 12 00 .sint8 0

000029 0a 10 00 00 00 .ifnot (addr 0x00000010)

00002e 3f print

00002f 05 .exit

0

1

2

3

4

5

6

7

8

9

>> ok

 5:

The program compiled, listed the binary RVM code, and then executed. After it

finished, a message ‘>> ok’ was displayed and the editor is ready for more text

or new commands.

13.3 Debugging Programs

RIDE offers basic debugging to trace how the executed code preforms. One or

more RVM instructions from the current or all processes, can be executed in

steps. Note that debugging is done on the compiled RVM binary code, not on

the input Rittle source code.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 81

The RVM code is sort of machine code that executes in the RVM. It is optimised

to level that allows realisation of most of the RVM directly in hardware. The

entire model is built around a stack machine, and all instructions take operands

from the stack and return data back these.

In order to start debugging, a compilation is required in order to prepare the

code and to reset the RVM for a new execution.

Using with the small program from above:

 1: var byte a=0;

 2: while a<10;

 3: print a++,CRLF;

 4: until;

 5: .[

lines compiled: 4

code length: 48 bytes

 5: ..

000005 2a 12 01 00 00 00 .var .sint8 V1

 5:

We have entered debugging and seeing the instruction due for execution.

Continuing further with the .. command for step execution:

 5: ..

00000b 12 00 .sint8 0

 5: ..

] 0: 0

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 82

After executing this instruction, we see a value has been added to the data stack.

The data stack always puts a new value on top of the already existing ones, and

the value that is taken is always the one that is on the top.

Step-debugging further:

00000d 29 01 00 .set V1

 5: ..

000010 28 01 00 .get V1

 5: ..

] 0: 0

000013 12 0a .sint8 10

 5: ..

] 0: 10

] -1: 0

000015 32 <

 5: ..

] 0: 1

000016 0a 2e 00 00 00 .ifnot (addr 0x0000002e)

 5:

00001b 28 01 00 .get V1

 5: ..

] 0: 0

00001e 28 01 00 .get V1

 5: ..

] 0: 0

] -1: 0

000021 49 .++

 5: ..

] 0: 1

] -1: 0

000022 29 01 00 .set V1

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 83

 5: ..

] 0: 0

000025 38 CRLF

 5: ..

] 0:

] -1: 0

000026 3f print

 5: ..

0

000027 12 00 .sint8 0

 5: ..

] 0: 0

000029 0a 10 00 00 00 .ifnot (addr 0x00000010)

 5: ..

000010 28 01 00 .get V1

 5:

We now see the first printed character in the marked line (it is not marked in the

actual system output), and the loop has completed its first iteration returned

back to the start for a next one. We can also see that there is a blank line in the

stack output between elements 0 and 1. That blank line is actually a valid data

element, generated by the CRLF instruction.

Adding more dots will add more instructions traced in a single step.

… will execute two instructions, …. will execute three instructions, and so on.

Debugging can be done on executing batches by using the .* command to

specify the number of instructions. For example:

.*50.

will execute 50 instructions before it stops for further interaction with the user.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 84

13.4 Saving, Loading, and Generating Executable Files

Source files can be saved or opened by using the .S and .O commands,

respectively. Let’s save the small test program:

 5: .s test1.rit

saving to test1.rit

>>> 50 bytes written

 5:

Starting a completely new source can be initiated by using the open command

with parameter ‘NEW’:

 5: .o new

 1:

Now all the previous text in the editor is deleted and it has returned back to its

initial state, ready for new text.

Let’s open the test program again:

 1: .o test1.rit

opening test1.rit

>>> 50 bytes read

5: .l

 1: var byte a=0;

 2: while a<10;

 3: print a++,CRLF;

 4: until;

 5:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 85

After a program has been written and the developer is happy with its

performance, it can be compiled and stored as a binary executable for further

distribution. Binary executables do not contain source code, but only the

machine code as compiled for the RVM.

Generating a binary executable file is done by using the .# command. Before

saving as binary executable, though, the program needs to be compiled, so

combining the two commands in a single line will perform the needed

operations at once:

 5: .[# test1.rxe

lines compiled: 4

code length: 48 bytes

saving to test1.rxe

>>> 48 bytes written

 5:

Now on the current file drive we should have saved both the source file test1.rit

and the executable binary test1.rxe

Although not enforced by RIDE, in order to ensure further compatibility in

future, it is recommended that Rittle source files are always stored with file

extension .RIT and the executables are stored with file extension .RXE

Exiting RIDE is done by executing ._ command. The source file that is currently

in the editor remains in memory, so re-entering RIDE later, will allow further

work from that point.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 86

14 OPERATING ENVIRONMENT

The operating environment in Rittle is where the system interacts with the user

for work with files and storage devices. This is the place where the user finds

themselves after initial system boot. The environment is a simplified version of

a disk operating system. It allows executing Rittle commands in direct mode

straight from the console, executing shell commands, entering RIDE, as well as

working with file storage devices and running files from them.

On initial start a text like this will be seen in the console:

Rittle v:J5.1-alpha [PC], (C) KnivD

IFS:/_

Rittle always boots up in the device called ‘IFS’ (Internal File Storage). The

presence of IFS is required for the normal operation of a Rittle system. Other file

devices may also be available, depending on the particular system configuration.

Several commands, along with ‘ride’, are available to the user at this point.

One important detail to note, is that the environment commands, wherever

they accept parameters, the parameters should be enclosed in double quotes

(“) just like normal Rittle text.

For convenience, however, the environment commands also allow execution

with parameters that are not enclosed. Execution of the same commands from

within a Rittle program, will require the parameters properly enclosed as text.

For example, the command chdir can be executed as chdir path or chdir “path”

within the environment, but must be executed as chdir “path” in a Rittle

program.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 87

14.1 The DIR Command

This is probably the most user environment command. It lists the files and

directories on the current or other specified device.

IFS:/_dir

directory IFS:/

 ----A 2019/04/24 18:38 15 config.sys

 ----A 2019/04/11 11:29 734 hello.rxe

 ----A 2019/05/05 09:28 50 test1.rit

 ----A 2019/05/05 09:37 48 test1.rxe

 4 file(s), 847 bytes total

 0 dir(s), 8330795 bytes free

IFS:/_

This is a typical output of a DIR command. It lists all files and directories along

with their date, size, and attributes. It also shows the amount of free space

remaining on the drive.

DIR can accept parameters to specify particular storage device, a specific path

to directory or file, or a standard file mask by using the ‘*’ and ‘?’ characters.

For example:

DIR *.rxe

will list the executable files in the current directory.

DIR ifs:/mydir1/prog*.rit

will list files that start with ‘prog’ and have file extension ‘.rit’, from directory

ifs:/mydir1.

14.2 The MOUNT and INIT Commands

In case there are more than one storage device in the system, changing between

them is done by executing command ‘mount’. For example, in some systems, a

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 88

storage device located in the RAM might exist for easier exchange of operational

data between various programs. Changing from the current drive to that one

could be done as in the example below:

IFS:/_mount ram:

RAM:/_

Now the current drive has become RAM:

This, however, is only possible if the specified device is already initialised with a

file system on it. In the particular example of a RAM drive, the information on it

disappears every time when the system restarts, so it is likely that there won’t

be any file system at the time of first attempted access.

The system will generate an error when the user attempts to access a device

that doesn’t exist or has no file system.

The output in such case when the RAM drive is not initialised will actually be like

this:

IFS:/_mount ram:

>>> drive error 13: no valid file system on the device

_

Note that after this error the system is ‘nowhere’. There is no active drive listed

in the prompt. In order to gain access to files again, the user will need to mount

some valid device, or initialise one. Rittle operates normally even being

‘nowhere’, hardware-independent commands can be executed from the

console, RIDE is also accessible, but no file operations are possible.

We can return back to IFS like this:

_mount ifs:

IFS:/_

But in the example above we actually wanted to access the RAM drive, so

instead of remounting IFS, we will use the INIT command to create a file system

on the RAM drive and prepare it for normal work:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 89

_init ram:

>>> initialised size 1028096 bytes

RAM:/_

The RAM drive is now initialised and successfully mounted. In case there is

already a file system in a drive that the user is trying to initialise, the command

will display a warning and will expect a manual confirmation before performing

the operation.

Rittle currently supports the following storage devices:

ifs: Internal File Storage, must be always present in every Rittle system

ram: Optional data drive based in RAM

sd1: Optional external SD card on ports 3 (CS#), 4 (SCLK), 5 (MISO), 6 (MOSI)

sd2: Optional external SD card on ports 2 (CS#), 4 (SCLK), 5 (MISO), 6 (MOSI)

When initialising a new file system, Rittle uses FAT or FAT32, automatically

selected depending on the size of the storage drive.

In the command line, the ‘mount’ command can omitted. Thus, for example,

typing just ‘sd1:’ in the console will have the same effect as ‘mount sd1:’. This is

valid for all file devices.

14.3 Running Executable Files

The command RUN is used to execute binary RXE files. For example:

run hello.rxe

will load and execute the file ‘hello.rxe’.

The RUN command can be used also for execution of .SYS text files, similar to

CONFIG.SYS. In such case every line of the text file is executed individually as if

it was entered in the console.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 90

14.4 Listing Text Files

The command LIST will dump the contents of a text file on to the console screen.

For example:

list myprog.rit

will load and list the text file ‘myprog.rit’. No execution will be performed. Listing

process can be terminated with the break key Ctrl-C.

14.5 Other commands for Work with File System

Several other commands are also available in the environment to work with the

file system:

delete filename - remove file

rename filename, newname - change the name of a file

copy filename, newpath - copy file from one drive/directory to another

mkdir dirname - create a new directory

rmdir dirname - remove a directory

chdir dirname - make a directory current

14.6 System Configuration in CONFIG.SYS

On initial start, Rittle looks for a text file called ‘config.sys’, located in the root

directory of the ‘ifs:’ drive. If file ifs:\config.sys exists, it is read out and

interpreted as configuration commands for Rittle.

All environment commands (including ‘RUN’) as well as the full Rittle

functionality are available for inclusion into the configuration file. It is in essence

a script of individual Rittle lines that always get executed first on system start.

Note that it is not a program since every line is compiled and executed

independently, therefore loops and variables will only work within the same

configuration line.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 91

Executing the ‘config.sys’ file allows devices automatically mounted on initial

start, files deleted or renamed, and importantly - one or more files can be made

to execute automatically on system boot by using the ‘run’ command in the

config.sys file. If there are more than one lines with ‘run’ command, they will be

executed sequentially, i.e. the second program will start after the first one has

finished, a third one will start after the second, and so on.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 92

15 RITTLE FOR THE PIC32MZ MICROCONTROLLER

The PIC32MZ EF series are powerful microcontrollers with plenty of resources,

and come in a convenient 64-pin package (other packages are also offered). It is

very suitable for the realisation of a Rittle system.

Download the Current Version

Disclaimer: Rittle is in continuous development. There could be incomplete or missing functionality in

the current version, or still unresolved bugs. The author will appreciate highly any feedback or

suggestions for solving existing problems or adding more functionality.

15.1 Pinout

Rittle on the 64-pin PIC32MZ2048EFH064 (TQFP64 and QFN64) microcontroller

uses the following pinout:

Pin Service Function Alt Functions

 1: DO/DI/AI

 2: DO/DI/AI SD Card SEL2#

 3: DO/DI/AI SD Card SEL1#

 4: DO/DI/AI System SCLK

 5: DO/DI/AI System MISO

 6: DO/DI/AI System MOSI

 7: GND

 8: Vdd +3.3V

 9: [5V] MCLR#

10: DO/DI/AI

11: DO/DI/AI COM4 Rx

12: DO/DI/AI

13: DO/DI/AI COM4 Tx

14: DO/DI/AI COM5 Rx / PWM (group 2)

15: DO/DI/AI PWM (group 1) / Vref-

16: DO/DI/AI COM5 Tx / Vref+

17: DO/DI/AI Console Rx

18: DO/DI/AI Console Tx

19: AVdd (filtered +3.3V)

20: AGND (filtered GND)

http://www.rittle.org/
http://rittle.org/downloads/RittleMZEF.zip

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 93

21: DO/DI/AI PWM (group 1) DB0

22: DO/DI/AI SPI2 MISO Display MISO DB1

23: DO/DI/AI SPI2 MOSI Display MOSI DB2

24: DO/DI/AI Display DC DB3

25: GND

26: Vdd +3.3V

27: DO/DI/AI Display RST# DB4

28: DO/DI/AI SPI2 Slave CS# Display CS# DB5

29: DO/DI/AI SPI2 SCLK Display SCLK DB6

30: DO/DI/AI PWM (group 3) DB7

31: 24MHz Input Clock

32: Osc Control SLEEP

33: [5V] USB VBUS Input

34: Vusb +3.3V

35: GND

36: USB Console D-

37: USB Console D+

38: DO/DI PWM (group 2)

39: Vdd +3.3V

40: GND

41: [5V] DO/DI COM3 Rx / IIC2 SDA TSDA

42: [5V] DO/DI COM3 Tx / IIC2 SCL TSCL

43: [5V] DO/DI IIC1 SDA

44: [5V] DO/DI IIC1 SCL

45: [5V] DO/DI PWM (group 3)

46: [5V] DO/DI PWM (group 3) / Wake# TIRQ#

47: [5V] DO/DI TCS#

48: [5V] DO/DI 32.768kHz Input Clock

49: [5V] DO/DI SPI1 SCLK

50: [5V] DO/DI SPI1 MISO

51: [5V] DO/DI SPI1 MOSI

52: [5V] DO/DI COM1 Rx

53: [5V] DO/DI COM1 Tx

54: Vdd +3.3V

55: GND

56: [5V] DO/DI COM2 Rx

57: [5V] DO/DI COM2 Tx

58: [5V] DO/DI SPI1 Slave CS# DB8 RESET#

59: GND

60: Vdd +3.3V

61: [5V] DO/DI DB8 DC (Display)

62: [5V] DO/DI DB8 RD#

63: [5V] DO/DI DB8 WR#

64: DO/DI/AI DB8 CS#

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 94

Externally generated 24 MHz clock is required on pin 31 for normal work of the

system. Pin 32 is an output reserved for oscillator sleep control. When Rittle

enters sleep mode, the output becomes in active high state which can be used

to disable the external oscillator.

On initial start, Rittle initialises the USB console and its serial duplicate on pins

17 and 18. The serial console pins, however, can be recycled and used for other

purposes, if initialised in the user software. Rittle will not attempt to re-initialise

them again until the next boot.

The same pins – 17 and 18, along with the MCLR#, can be used to upload

firmware into the PIC32 microcontroller by using the standard Microchip

programmer tools such ICD3 or PickIt3. In such case pin 17 serves as clock

(PGEC), and pin 18 serves as data (PGED).

Rittle allocates three pins for System SPI bus on pins 4, 5, and 6, needed to

communicate with standard supported external hardware such as SD cards,

serial displays, etc. In addition to these three pins, others are used for the

relevant CS# line on the external device. Within the same group, Rittle allocates

pins 5 and 6 for System I2C, if needed.

The System SPI pins are not initialised during the boot procedure, and can be

used by software for other purposes. Once there is a need for System SPI,

however, Rittle will take over and initialise these pins, so they should be used

with caution, and only if the software does not call functions that require System

SPI.

The same is valid for the SD card select pins – they are not initialised during initial

boot, and are free for use for other needs, however, if the system attempts to

contact file device SD1: or SD2:, the relevant select pin will be automatically

assigned and used as SD card select line.

On initial boot, Rittle checks whether there is an external feed of 32.768 kHz

clock on pin 48, and if so, assigns the built-in real-time clock to use that clock. If

there is no external clock on the pin, an internal (lower accuracy) LPRC oscillator

will be feeding clock into the real-time clock, and pin 48 is then available for

other use.

All other pins, not mentioned above, remain uninitialised and are available to

the user.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 95

NOTE: Rittle for PIC32MZ enables internal pull-up resistors on the following pins

by default:

1, 2, 3, 28, 41, 42, 43, 44, 46, 47, 62, 63, and 64.

If any of these pins are required for functions where the internal pull-up will be

undesirable, the relevant port should be re-initialised by the user program.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 96

15.2 The RITTLE Board

An open source development board around the PIC32MZ2048EFH064-250I/PT

microcontroller. All of the PIC32’s I/O ports are exposed to the outside world,

with only one permanently reserved for input clock, and one more for an

optional secondary input clock for the RTCC. The schematics and all other files

are available online.

The serial console is always available as Virtual COM on the USB port.

It is also doubled on the PIC32’s pins 17 (Rx input) and 18 (Tx output). Default

protocol is 115200, 8N1.

Download the Schematic

Download the Full Pack

Order RITTLE Board PCB for DIY Assembly

http://www.rittle.org/
http://rittle.org/downloads/RittleBoard.pdf
http://rittle.org/downloads/RittleBoard.pdf
http://rittle.org/downloads/RittleBoard.zip
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=55Y85SHMAZXYU

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 97

15.3 Work with I/O ports

The functions for control of the I/O ports include setting up port function and

data direction.

15.3.1 port

Format:

port (text_function, integer_portN [, integer_portN …]);

The ‘port’ function is used to initialise an I/O port for specific functionality.

The function parameter is provided as text, and the following one or more

parameters are port numbers that need to be initialised all with the same

function.

The port numbers are specified as per the numbering system in the RITTLE board

– i.e. equal pin numbers. Therefore, PIC32’s pin 5 corresponds to Rittle port 5,

PIC32’s pin 48 is Rittle port 48, and so on. Note that some port numbers are not

available as they are being used for system purposes – power, etc.

Furthermore, depending on the system configuration, Rittle reserves some of

these ports for other required functionality. Ports 17 and 18 are used by the

serial system console, ports 3, 4, 5, and 6, are shared with the external SD card,

and other ports may be shared with other functions.

The function is built from two sub-parts – switch and function. The switch is

optional precedes the function.

Valid switches are:

“+” Enable the built-in pull-up resistor on the port

“-” Enable the built-in pull-down resistor on the port

“#” The port is initialised as Open-Drain

Supported functions are:

”DIN” The port is initialised as digital input. Reading from the port will

return a value 0 or 1 only, depending on the logic level applied on

the port.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 98

”DOUT” The port is initialised as digital output. Writing 0 to it will set the

output low, otherwise writing a non-0 value will set the port high.

”AIN” The port is initialised as analogue input. Reading from the port will

return a real number value between 0 and 1, proportional to the

voltage applied on the port in respect to the configured negative

and positive reference for the ADC. See command ‘Vref’ for further

details about ADC referencing.

 Not all ports can be initialised as AIN. Valid AIN port numbers

(before applying the already reserved functionality for other needs)

are:

 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 27,

28, 29, 30, and 64.

”PWM:freq” The port is initialised as digital output that generates pulse-

modulated signal. This function requires its own parameter

‘frequency’ (given in Hertz) to specify the carrying frequency for the

pulse width modulation. Carrier frequencies may vary from 1Hz up

to 64MHz, however the practically usable values are between 10Hz

and 10MHz since with increasing the frequency, the accuracy of the

duty reduces.

 Not all ports can be initialised as PWM. Valid PWM port numbers

(before applying the already reserved functionality for other needs)

are:

 14, 15, 21, 30, 38, 45, and 46

 In addition to that, PWM ports share the carrier frequency in

groups. Initialising carrier frequency for one port will apply the

same frequency for the other ports in the same group, regardless

of whether they have been initialised with a different value prior to

that. There are three groups of ports, therefore at any moment of

time up to three separate PWM carrier frequencies are possible:

 Group 1 – ports 15 and 21

 Group 2 – ports 14 and 38

 Group 3 – ports 30, 45, and 46

Examples:

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 99

port “-DIN”, 12, 38, 50, 57;

port “+#DOUT”, 64;

port “AIN”, 21, 28, 29;

port “-PWM:50000”, 45, 46;

15.3.2 Vref

Format:

Vref (text_function);

Specifies referencing model for the ADC. The parameter is given in text format.

Valid options are:

“Vdd/Vss” Reference taken from the positive and negative rails of the

power supply, where Vref+ is 3.3V, and Vref- is 0V (GND). The

accuracy of the ADC in this case depends on the accuracy of

the power supply.

“Vref+/Vss” Vref- is 0V (GND), and Vref+ is taken from the dedicated pin

on PIC32 – port 16.

“Vdd/Vref-” Vref+ is taken from the positive rail of the power supply, and

Vref- is taken from the dedicated pin on PIC32 – port 15.

“Vref+/Vref-” Both Vref- and Vref+ are taken from the dedicated pins on

PIC32 – ports 15 and 16, respectively.

By default, Rittle uses ADC referencing to the power rails.

15.3.3 Din

Format:

integer= Din (integer_portN);

Read digital input and returns 0 or 1.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 100

15.3.4 Dout

Format:

Dout (integer_bitVal, integer_portN [,integer_portN, …]);

Output of digital value 0 or 1 on specified one or more ports.

15.3.5 Dtog

Format:

Dtog (integer_portN [,integer_portN, …]);

Toggle the digital value of specified one or more ports. Toggling changes the

output of the port to its negating state – if the port is currently high, it will

become low, and vice versa.

15.3.6 Ain

Format:

real= Ain (integer_portN);

Read analogue input port and return a real number value between 0 and 1,

proportional to the voltage on the port in respect to the set Vref+/Vref- values.

Example:

Let’s assume Rittle uses the default ADC referencing model, where Vref+ is taken

from the positive power supply 3.3V, and Vref- is taken from the ground power

rail 0V, and there is 1.88V (in respect to GND) applied on the AIN port 22.

Executing Ain(22) will return value 0.569697, which is proportional to the

voltage over the entire range: 1.88/3.3 = 0.569697.

15.3.7 setPWM

Format:

setPWM (real_duty, integer_portN);

Set PWM duty cycle between 0 (0%) and 1 (100%) for the specified port number.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 101

15.4 Work with Communication Interfaces

Rittle supports several serial interfaces, controlled by a small number of

functions.

15.4.1 enable

Format:

enable (text_interface, text_parameters [, @func_callback()]);

Enable specified communication interface. Enabling the interface automatically

configures the needed I/O ports.

There are several interfaces currently supported in Rittle:

“SPI1” - SPI interface on ports 49 (SCLK), 50 (MISO), 51 (MOSI).

Additionally, when initialised in slave mode, port 58 is

automatically assigned as digital input, and monitored during

execution. The call back function gets executed when a low level on

the port has been detected. The user’s function must monitor itself

for the port going back to high, before exit.

“SPI2” - SPI interface on ports 29 (SCLK), 22 (MISO), 23 (MOSI).

Additionally, when initialised in slave mode, port 28 is

automatically assigned as digital input, and monitored during

execution. The call back function gets executed when a low level on

the port has been detected. The user’s function must monitor itself

for the port going back to high, before exit.

“IIC1” - I2C interface on ports 43 (SDA) and 44 (SCL).

“IIC2” - I2C interface on ports 41 (SDA) and 42 (SCL).

The same port as COM3, so only one of them can be used at a time.

“COM0” - System console. Serial UART interface on pins 17 (Rx) and 18 (Tx)

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 102

“COM1” - Serial UART interface on pins 52 (Rx) and 53 (Tx)

“COM2” - Serial UART interface on pins 56 (Rx) and 57 (Tx)

“COM3” - Serial UART interface on pins 41 (Rx) and 42 (Tx)

The same port as IIC2, so only one of them can be used at a time.

“COM4” - Serial UART interface on pins 11 (Rx) and 13 (Tx)

“COM5” - Serial UART interface on pins 14 (Rx) and 16 (Tx)

The second parameter in the ‘enable’ function defines specific options for the

selected interface. It is also given in text form like the first one with interface

name.

An optional third parameter specifies a call back function that is executed when

a data word is received. The requirements toward the call back function are very

strict – it must have no input or output parameters.

Call back functions are always allowed for UARTs but only allowed in slave roles

for the other interfaces.

For SPI interfaces the format is:

“role (M or S) [, baudrate] [, SPI mode (0 or 1 or 2 or 3), data word length (8 or

16 or 32)]]” [, @rx_callback()]

The role could be either M(aster) or S(lave).

Baudrate values are only valid in master mode and can be between 1 and

100,000,000 bits per second.

If not specified, the default SPI mode is 0, and the default data word length is 8

bits. New data word length can be defined only if SPI mode is specified too.

Examples for SPI interface:

enable “SPI1”, “M, 12000000”; ‘ SPI master working at 12MHz in mode 0

enable “SPI2”, “S, 3, 16”, @rx_spi(); ‘ SPI master in mode 3 with 16-bit data

‘ word and a call back function executed

‘ on every received data word

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 103

For I2C interfaces the parameters have the following format:

“role (M or S) [, baudrate]” [, @rx_callback()]

The role could be either M(aster) or S(lave), followed by baudrate (only valid in

Master only) value between 1 and 5,000,000 bits per second.

Example for enabling the I2C interface:

enable “IIC1”, “M, 400000”;

The UART serial interfaces implement the RS232 protocol and have this format:

"baudrate [, data bits (8 or 9) parity (N or E or O) stop bits (1 or 2)]"

[, @rx_callback()]

Baudrate value can be between 1 and 25,000,000 bits per second.

If not specified, the default protocol parameters are 8 data bits, no parity, 1 stop

bit. Other options for parity include E(ven) or O(dd).

Examples for enabling and configuration of UART interface:

enable “UART1”, “115200, 8N1”, @rx1; ‘ will execute the callback function

‘ rx1() on every received data byte

enable “UART4”, “9600”; ‘ default protocol 8N1 and without call back function

15.4.2 disable

Format:

enable (text_interface);

Disable specified communication interface. The I/O pins used for the interface

are reset back to their default state.

15.4.3 trmt

Format:

trmt (text_interface, any_data [, any_data, …]);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 104

Transmit data to the specified interface.

The interfaces is specified in text form – “UART1”, “SPI2”, etc.

Specifically for the I2C case, the interface also includes an optional action,

immediately following the interface identifier.

Actions can be

“:S” - The transmission is preceded by an I2C start condition.

“:P” - The transmission is followed by an I2C stop condition.

“:R” - The transmission is preceded by an I2C repeated start condition.

Data elements can be one or more of integer, real, or text type. Integer

information sends a single data word, real is transmitted in its native form (8

bytes), and text is transmitted as a zero-terminated string of bytes.

Examples:

trmt “UART2”, 10, 20, 30, 40; ‘ send bytes 10, 20, 30, 40, to UART2

trmt “SPI1”, str1; ‘ str1 is a text variable transmitted over SPI1

trmt “IIC1:S”, 0x44; ‘ a start condition followed by byte 0x44 is

‘ transmitted over I2C. The bus remains open for

‘ following bytes

trmt “IIC1:P”, 0x80, 0xfe; ‘ a stop condition is generated after sending the

‘ supplied sequence of bytes

15.4.4 recv

Format:

integer= recv (text_interface);

Receive a single data word from the specified interface.

The interfaces is specified in text form – “UART1”, “SPI2”, etc.

Specifically for the I2C case, the interface also includes an optional action,

immediately following the interface identifier.

Actions can be

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 105

“:S” - The transmission is preceded by an I2C start condition.

“:P” - The transmission is followed by an I2C stop condition.

“:R” - The transmission is preceded by an I2C repeated start condition.

Example:

var byte key = recv(“UART1”);

15.5 Real-Time Clock and Calendar

The Real-Time Clock and Calendar (RTCC) is a built-in hardware block in the

PIC32MZ microcontroller. It has the function to keep track of the actual time and

date, provided an external power supply is always supplying the microcontroller

with power.

15.5.1 srctime

Format:

srctime (text_src, int_cal);

Enable the RTCC’s clocking source and specifies calibration value for the crystal

drift. Two choices for the first parameter are possible:

“LPRC” selects the PIC32’s internal low power clock.

“SOSC” selects an external secondary 32.768 kHz clock connected to port 48.

The calibration value is typically 0, but can be changed in the range -512 … +511

adjusted clocks per minute.

On very first initialisation, Rittle tries to enable the external oscillator first, and

falls back to the internal LPRC in case there is no clock coming on port 48.

15.5.2 settime

Format:

settime (text_dt);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 106

Set time and date for the RTCC. The parameter is supplied as fixed length 16-

character text in the format “yymmddwwhhmmss00”.

The input text is composed by eight pairs of characters, each expressing a

decimal value. If the value is smaller than 10, a leading ‘0’ must be added to it.

The pairs are as follow:

year (00-99), month (01-12), day (01-31), weekday (Sunday=00 - Saturday=06),

hour (00-23), minute (00-59), second (00-59), 00

Note that the weekday must be always supplied, as well as the trailing pair ‘00’

which is reserved for future use but must be included in the parameter.

15.5.3 gettime

Format:

text= gettime;

Get time and date from the RTCC and return a fixed length 16-character text in

the same format as in the settime() function. In case there are invalid characters

in the text (such as in case the RTCC has not been initialised with a proper time,

or is not functioning normally), the invalid characters are marked as ‘#’ within

the returned text.

15.6 System Control

Functions that control the system performance and power consumption.

15.6.1 clock

Format:

clock (int_freq);

Set CPU frequency clock or put the system into sleep mode. The frequency

parameter is given in Megahertz.

Valid options are 4, 16, 64, 128, 192, and 256 MHz.

On initial boot, Rittle starts at its default clock frequency of 192 MHz.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 107

NOTES:

1. The USB console will not work at 4 MHz clock. In such case only the serial

console available on pins 17 and 18, is available.

2. The “Turbo” mode 256 MHz may not work on all PIC32MZ chips, or may

render the system unstable. Additional measures to supply the processor

with higher current or heat dissipation may have to be taken as well.

Current consumption with different clocks as measured in the RITTLE Board:

4 MHz 16 MHz 64 MHz 128 MHz 192 MHz 256 MHz
45.6 mA 50.8 mA 70.6 mA 104.4 mA 139.1 mA 171.5 mA

15.6.2 sleep

Format:

sleep (int_ms);

Put the system into sleep mode with minimum power consumption for a

specified period of time, given in milliseconds. The typical accuracy of the sleep

period is in around 32ms periods, so any values smaller than the granularity

period, will cause an immediate wake up. Execution of all parallel processes is

suspended.

NOTE: The current revision “B2” of the PIC32MZ EF microcontroller has an

internal hardware problem with the sleep mode. That prevents it from achieving

optimum sleep current, but instead, the minimum current remains as high as

9mA. Due to this and until Microchip manage to rectify the problem, the sleep()

function will not be able to produce its desired result and it is recommended not

to be used.

Value 0 for the parameter, will force the system into indefinite sleep with only

remaining option to wake up from an external source.

Upon entering sleep mode, Rittle automatically configures pin 46 as input and

enables its internal pull-up resistor. A falling edge on pin 46 will wake up the

system and restore the last active frequency of the CPU clock, even if the

specified time for sleep has not expired. Execution will continue with the

instruction immediately following clock(). Pin 46 will remain configured as input

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 108

but the pull-up resistor will be restored back to its initial disabled state. The user

program will need to re-configure the port again if it is used for other purposes.

15.7 Specific Peripheral Modules

Rittle includes functions to support a selected range of popular peripherals.

15.7.1 LCD4

Format:

LCD4 (text_cmd [, any_param, …]);

Enable support of popular LCD modules with 4-bit HD44780-compatible

interface. Since this interface is a de-facto standard among this type of display,

the function should be able to cover the vast majority of such modules, currently

on the market.

This type of displays are text-only and don’t support colours. They also have

fixed character table in ROM and no possibility for different screen orientations.

However, their simple interface, good readability, and durable design make

them a very popular choice in industrial applications where only limited user

interface is required.

--------------\ /----------------------\

 P56 |--- RS ---------| RS (D/C in some) |

 P57 |--- EN ---------| E |

PIC32MZ P58 |--- D4 ---------| DB4 |

 P61 |--- D5 ---------| DB5 |

 P62 |--- D6 ---------| DB6 |

 P63 |--- D7 ---------| DB7 |

--------------/ | LCD Module |

 GND|--| DB0 |

 GND|--| DB1 |

 GND|--| DB2 |

 GND|--| DB3 |

 GND|--| R/W |

 \----------------------/

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 109

All display sizes from 8x1 (8 characters per line, 1 line) to 40x4 (40 characters

per line, 4 lines) are supported.

Rittle uses six data lines for the interface as shown in the connection diagram.

LCD’s data lines DB0-DB3 and signal R/W are not used and should be

permanently connected to ground.

COMMANDS:

1. Initialisation

Before any work with the LCD4 module, the interface needs to be

initialised.

LCD4 “initL”, int_columns, int_rows

Initialise the LCD4 interface with specified number of columns (8 – 40) and

rows (1 – 4) for the display.

The “initL” command initialises the display as “locked” – all characters

printed at cursor position outside of the screen boundaries, will be

ignored.

LCD4 “initS”, int_columns, int_rows

Initialise the LCD4 interface with specified number of columns (8 – 40) and

rows (1 – 4) for the display.

The “initS” command initialises the display as “scrolling” – upon reaching

the bottom of the screen, any character printed beyond the screen

boundaries will cause a “scroll up” for all information on the screen.

Screen initialisation can be performed as many times as needed, and if

necessary the screen can be dynamically re-initialised from “locked” to

“scrolling” and vice versa.

2. LCD4 “clear”

Clear the screen and set cursor position at the top left corner at

coordinates 0, 0;

3. LCD4 “scroll:U”

LCD4 “scroll:D”

LCD4 “scroll:L”

LCD4 “scroll:R”

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 110

Perform screen scroll – up, down, left, or right, respectively.

4. LCD4 “goto”, int_x, int_y

Set screen coordinate (x, y) as the next location for output. All screen

coordinates start from 0.

5. LCD4 “print”, any_data, …

Print information on the screen. One or more parameters of all ordinal

types, can follow.

Depending on the type of initialisation, printing will perform scroll up of

the display, or ignore characters printed outside of the screen boundaries.

6. LCD4 “char”, int_code, big_bitmask

Define specific character. HD44780-compatible controllers allow up to

eight custom-defined characters with codes from 0 through 7.

The bitmask parameter consists of five bytes (all characters occupy 5x8

matrix) that define the character’s five columns from left to right.

15.7.2 display

Format:

display (text_type, int_resH, int_resV);

Enable support, initialise, and attach specified display driver. If a SPI display

module is used, it occupies the same pins as SPI2 as shown in the pinout, plus

two additional pins for display RESET and D/C signals.

Connections for SPI display

 SPI LCD Module

--------------\ /------------------------\

 P22 |--- MISO -------| MISO (SDO in some) |

 P23 |--- MOSI -------| MOSI (SDA in some) |

PIC32MZ P24 |--- D/C# -------| DC (A0 in some) |

 P27 |--- RESET# -----| RES |

 P28 |--- CS# --------| CS |

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 111

 P29 |--- SCLK -------| SCLK (SCL in some) |

--------------/ \------------------------/

Connections for 8-bit display

 8-bit bus LCD Module

--------------\ /------------------------\

 P21 |--- DB0 --------| D0 |

 P22 |--- DB1 --------| D1 |

PIC32MZ P23 |--- DB2 --------| D2 |

 P24 |--- DB3 --------| D3 |

 P27 |--- DB4 --------| D4 |

 P28 |--- DB5 --------| D5 |

 P29 |--- DB6 --------| D6 |

 P30 |--- DB7 --------| D7 |

 | | |

 P58 |--- RESET# -----| RESET (optional) |

 P61 |--- D/C# -------| D/C |

 P62 |--- RD# --------| RD |

 P63 |--- WR# --------| WR |

 P64 |--- CS# --------| CS |

--------------/ \------------------------/

Some displays may not require one of more of the control signals. In such case

those signals can be left floating, however Rittle will still be driving them in a

way as if they are being used by the display.

An exception to this are the HD44780-based text display modules as they use a

different type of interface. Connections to those displays are described in the

paragraph for LCD4.

The first text parameter for the function specifies the display controller model.

Currently supported displays are:

“NULL” Null device. All currently attached display driver functions

are detached and released with console remaining the single

output destination. The parameters for display resolution

have no meaning, and orientation is always the native for the

console.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 112

 “HD44780” NOTE: The parameter “HD44780” can be aliased as “LCD4”.

Alphanumeric LCD with HD44780-compatible controller on

4-bit bus as described for the LCD4() function.

 These displays support only their native orientation, and

their minimal addressable component is character, not pixel.

 Supported resolutions (in characters) are from 8 to 40 for

resH, and from 1 to 8 for resV.

“LRSPI*” Covers the majority of popular display modules using

controllers such as ST7735, ST7789, ILI9163, ILI9341, ILI9481,

ILI9488, and many others from other manufacturers. These

displays have resolutions up to 320x480 pixels, or smaller.

They only support hardware scrolling in portrait mode, and

for full support, in landscape mode the image scroll is

handled in software, so presence of the MISO (or SDO) pin is

required, otherwise all graphics will work, but the system

console will not be properly supported.

“MLRSPI*” This driver is the same as “LRSPI*” but supports displays with

internally mirrored graphic matrix.

“SSD196*” Support for displays with SSD1961 / SSD1962 / SSD1963

controller and connected on the 8-bit bus. These are usually

built around SSD1963 with lot of internal graphic memory.

They are also able to perform fast scroll in all directions, so

console performance in landscape mode will not suffer as in

the case with the SPI displays.

“MSSD196*” Same as the “SSD196*” driver but with mirrored graphic

matrix.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 113

The following two parameters are numeric and define respectively the

horizontal (resH) and vertical (resV) resolution of the display in number of the

smallest addressable component. Normally that is “pixel”, but for text-only

displays, it is “character”.

Horizontal and vertical resolution parameters must match the specifications of

the particular display panel, otherwise it won’t work properly.

Orientation of the panel is calculated automatically on the basis of the given

parameters for display resolution.

When the horizontal resolution is greater than the vertical resolution, the

display is in LANDSCAPE mode, otherwise, if the vertical resolution is greater

than the horizontal, the display is in PORTRAIT mode.

If any of the two following parameters for resolution is given as a negative

number, then the image of the display is mirrored, reverse landscape or reverse

portrait.

In an isolated case when the horizontal resolution is exactly the same as the

vertical resolution, the orientation is determined by the sign of both parameters

as per the following table:

Positive resH, Positive resV LANDSCAPE mode

Positive resH, Negative resV Reversed LANDSCAPE mode

Negative resH, Positive resV PORTRAIT mode

Negative resH, Negative resV Reversed PORTRAIT mode

Text-only and a small number of graphic displays do not support different

orientation modes. Those displays will work only in their native mode of

orientation regardless the sign of the “resH” and “resV” parameters.

There is another accepted form for the display() function.

display (“CONSOLE”, int_fontFcol, int_fontScale);

This one is not to install a display driver, but instead, delivers instructions to the

currently installed driver. The first parameter specifies 24-bit colour for the text

font in the system console (the background is automatically initialised as black

colour), and the second parameter specifies the scale for the system font.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 114

If both parameters are greater than zero, system console output is enabled for

the currently attached display device.

If any of the parameters is zero or negative number, the system console output

for the attached display will be disabled.

This has no effect on the system console attached to the USB or serial port.

15.7.3 touch

Format:

touch (text_type/cmd [, …]);

Enable support, initialise, and attach specified touch screen driver. If one with

SPI is used, it occupies the same pins as the system SPI as shown in the pinout,

plus two additional pins for TCS# and TIRQ# signals.

 SPI touch panel

--------------\ /------------------------\

 P4 |--- SYS_SCLK ---| SCLK (T_CLK in some) |

 P5 |--- SYS_MISO ---| MISO (T_DO in some) |

PIC32MZ P6 |--- SYS_MOSI ---| MOSI (T_DIN in some) |

 P46 |--- IRQ# -------| IRQ (T_IRQ in some) |

 P47 |--- CS# --------| CS (T_CS in some) |

--------------/ \------------------------/

The first parameter in the function specifies the model of the touch panel or a

command to be executed by the touch panel. Commands should be sent only

after the touch panel has been initialised.

Currently supported are:

The first text parameter for the function specifies the display controller model.

Currently supported display controllers are:

“NULL” Null device. Any currently active touch panel is disconnected

from the system and the CS# and TIRQ# pins are released.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 115

 “RSPI*46” Resistive panels served by controller such as XPT2046,

TSC2046, ADS7846, ADS7843, or similar. These controllers

use SPI interface and should be connected to the system SPI

bus as shown above.

“RRSPI*46” Same as the above but with swapped X and Y axes on the

touch panel. This is usually needed when the panel is used in

landscape mode.

Once a touch panel has been initialised, the program can send commands to it

by using the same function touch().

“CALIBRATE” Interactive calibration of the panel. This works only if a

display driver is also initialised and active.

 The calibration shows sequentially four small white squares

in every corner of the panel, and expects the user to touch in

the square. Raw values are then taken from the touch

controller and processed to produce two calibration values

that are returned by the function.

 The specific format of the command is:

 int cx,cy = touch (“CALIBRATE”);

“SETCAL” Set calibration values for touch panel. Once calibrated, the

panel can be immediately restored to its calibrated state

every time whenever that is needed (usually after system

reset).

 The command takes two parameters and stores them in

internal variables for further processing when the touch

panel is used.

 The specific format of the command is:

 touch (“SETCAL”, int_cx, int_cy);

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 116

“POINTS” Return the number of points currently being touched on the

panel. Resistive panels can only have one point while

capacitive panels can support one or more, sometimes as

many as 10.

 The specific format of the command is:

 int p = touch (“POINTS”); ‘ return the number of

‘ currently touched points

“READ” This is the main command that can read information from

the touch panel, used in conjunction with “POINTS”.

Every time a “READ” command is executed it returns one

currently touched point from the panel.

If the panel is calibrated, the returned coordinates are in

pixels, otherwise they are raw values from the touch

controller.

 The specific format of the command is:

 int x, y, p = touch (“READ”);

 Three integer values are returned – coordinate on the X-axis,

coordinate on the Y-axis, and pressure. The pressure value is

arbitrary and depends on the actual type of the touch panel.

 If there are no more active touch points to be read, the

“READ” command will return values -1 for the X, Y, and

pressure variables. At that point execution of another

“POINTS” command will re-initialise the internal data stack

with active points, if there are any.

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 117

16 GLOSSARY OF THE PIC32MZEF ADDITIONS

These functions are specific for the Rittle implementation for the PIC32MZ

microcontroller. Their availability and format are not guaranteed in other

system configurations.

Ain clock Din disable display Dout Dtog enable

gettime LCD4 port recv setPWM settime sleep

srctime touch trmt Vref

http://www.rittle.org/

Programming Language RITTLE http://www.rittle.org Document Issue J9.0 118

17 LICENSE CONDITIONS

Copyright © 2017-2019, Konstantin Dimitrov

Creative rights reserved.

Some graphic functions have been built on the basis of modified code from the “GFX Library”

© 2013, written by Limor Fried / Ladyada for Adafruit Industries with full acknowledgement

for their respective rights and thanks for the distributed open-source code.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. Neither the name of Konstantin Dimitrov nor the names of other contributors may be used

to endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL KONSTANTIN DIMITROV BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Full or partial source codes can be requested for free following the link below.

Request the current source codes

© Konstantin Dimitrov

knivd@me.com

http://www.rittle.org/
https://www.adafruit.com/
mailto:knivd@me.com?subject=%22Source%20codes%20for%20Rittle%22

	0 COVER PAGE
	1 NEWS AND UPDATES
	2 INTRODUCTION
	3 BASICS
	3.1 Source Files
	3.2 Comments in the Source
	3.3 Numeric Constants
	3.3.1 Binary Numbers
	3.3.2 Hexadecimal Numbers
	3.3.3 Decimal Integer Numbers
	3.3.4 Decimal Real Numbers

	3.4 Symbolic Constants (TEXT)
	3.5 Statements
	3.6 Identifiers
	3.6.1 Variables and Data Types
	3.6.2 Functions
	3.6.3 Reserved Words

	3.7 Operations

	4 DATA TYPE “TEXT”
	4.1 General Information
	4.2 Operations
	4.3 Text Formatting

	5 UNITS
	5.1 Defining Data Structures
	5.2 Structural Arrays

	6 CONSTANT DATA ARRAYS
	7 PROGRAM CONTROL STRUCTURES
	7.1 Conditional Branch
	7.2 Loop
	7.3 Exit and Repeat
	7.4 Labels

	8 PARALLEL PROCESSES
	9 REFERENCE OF THE BUILT-IN FUNCTIONS
	9.1 Mathematical Functions
	9.1.1 sin
	9.1.2 cos
	9.1.3 tan
	9.1.4 asin
	9.1.5 acos
	9.1.6 atan
	9.1.7 hsin
	9.1.8 htan
	9.1.9 trim
	9.1.10 abs
	9.1.11 sign
	9.1.12 deg
	9.1.13 rad
	9.1.14 log
	9.1.15 ln
	9.1.16 exp
	9.1.17 E
	9.1.18 PI
	9.1.19 random

	9.2 Text Functions
	9.2.1 val
	9.2.2 format
	9.2.3 sim
	9.2.4 search
	9.2.5 insert
	9.2.6 char
	9.2.7 code
	9.2.8 cut

	9.3 Files and File Storage Devices
	9.3.1 init
	9.3.2 mount
	9.3.3 where
	9.3.4 delete
	9.3.5 rename
	9.3.6 copy
	9.3.7 open
	9.3.8 close
	9.3.9 isopen
	9.3.10 fpos
	9.3.11 eof
	9.3.12 ioerr
	9.3.13 seek
	9.3.14 fsize
	9.3.15 write
	9.3.16 read
	9.3.17 ffirst
	9.3.18 fnext
	9.3.19 mkdir
	9.3.20 rmdir
	9.3.21 chdir

	9.4 Multitasking
	9.4.1 pproc
	9.4.2 pterm

	9.5 Others
	9.5.1 include
	9.5.2 run
	9.5.3 platform
	9.5.4 freemem
	9.5.5 uptime
	9.5.6 wait
	9.5.7 tick
	9.5.8 type
	9.5.9 size
	9.5.10 clear
	9.5.11 isword
	9.5.12 count
	9.5.13 isval
	9.5.14 bit
	9.5.15 userbrk

	9.6 User Interface and Graphics
	9.6.1 print
	9.6.2 CRLF
	9.6.3 conch
	9.6.4 conrd
	9.6.5 cls
	9.6.6 gpattr
	9.6.7 gprint
	9.6.8 pixel
	9.6.9 fill
	9.6.10 line
	9.6.11 circle
	9.6.12 ellipse
	9.6.13 triangle
	9.6.14 rect
	9.6.15 gput
	9.6.16 gget
	9.6.17 font
	9.6.18 shape

	10 GLOSSARY OF THE CORE FUNCTIONS
	11 GLOSSARY OF THE GUI FUNCTIONS
	12 EXTREME PROGRAMMING WITH RITTLE
	12.1 Group Assignments
	12.2 Variables as Data Types
	12.3 Renaming and Reusing Variables
	12.4 Dynamic Arrays
	12.5 Multiple Comparisons
	12.6 Increments and Decrements
	12.7 Morphing Functions
	12.8 Nested Functions
	12.9 Function Variables
	12.9.1 Declaring Function Variables
	12.9.2 Using Function Variables

	13 RIDE
	13.1 Writing Programs in the Text Editor
	13.2 Compiling and Executing Programs
	13.3 Debugging Programs
	13.4 Saving, Loading, and Generating Executable Files

	14 OPERATING ENVIRONMENT
	14.1 The DIR Command
	14.2 The MOUNT and INIT Commands
	14.3 Running Executable Files
	14.4 Listing Text Files
	14.5 Other commands for Work with File System
	14.6 System Configuration in CONFIG.SYS

	15 RITTLE FOR THE PIC32MZ MICROCONTROLLER
	15.1 Pinout
	15.2 The RITTLE Board
	15.3 Work with I/O ports
	15.3.1 port
	15.3.2 Vref
	15.3.3 Din
	15.3.4 Dout
	15.3.5 Dtog
	15.3.6 Ain
	15.3.7 setPWM

	15.4 Work with Communication Interfaces
	15.4.1 enable
	15.4.2 disable
	15.4.3 trmt
	15.4.4 recv

	15.5 Real-Time Clock and Calendar
	15.5.1 srctime
	15.5.2 settime
	15.5.3 gettime

	15.6 System Control
	15.6.1 clock
	15.6.2 sleep

	15.7 Specific Peripheral Modules
	15.7.1 LCD4
	15.7.2 display
	15.7.3 touch

	16 GLOSSARY OF THE PIC32MZEF ADDITIONS
	17 LICENSE CONDITIONS

